2023年吉林市长春汽车经济开发区第六中学高一数学第二学期期末监测模拟试题含解析_第1页
2023年吉林市长春汽车经济开发区第六中学高一数学第二学期期末监测模拟试题含解析_第2页
2023年吉林市长春汽车经济开发区第六中学高一数学第二学期期末监测模拟试题含解析_第3页
2023年吉林市长春汽车经济开发区第六中学高一数学第二学期期末监测模拟试题含解析_第4页
2023年吉林市长春汽车经济开发区第六中学高一数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.2.已知等比数列中,,,则()A.10 B.7 C.4 D.123.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.4.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面5.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.6.由小到大排列的一组数据,,,,,其中每个数据都小于,那么对于样本,,,,,的中位数可以表示为()A. B. C. D.7.已知,并且是第二象限的角,那么的值等于()A. B. C. D.8.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为().A. B. C.50 D.9.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c10.执行下边的程序框图,如果输出的值为1,则输入的值为()A.0 B. C.0或 D.0或1二、填空题:本大题共6小题,每小题5分,共30分。11.设是等差数列的前项和,若,,则公差(___).12.若点在幂函数的图像上,则函数的反函数=________.13.一船自西向东匀速航行,上午10时到达一座灯塔的南偏西距塔64海里的处,下午2时到达这座灯塔的东南方向的处,则这只船的航行速度为__________海里/小时.14.已知点和在直线的两侧,则a的取值范围是__________.15.点到直线的距离为________.16.若,,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四边形ABCD是平行四边形,点E,F,G分别为线段BC,PB,AD的中点.(1)证明:EF∥平面PAC;(2)证明:平面PCG∥平面AEF;(3)在线段BD上找一点H,使得FH∥平面PCG,并说明理由.18.已知,,.(1)求的最小值;(2)求的最小值.19.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.20.已知函数(1)若关于的不等式的解集为,求的值;(2)若对任意恒成立,求的取值范围.21.在中,角所对的边分别为,满足(1)求的值;(2)若,求b的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

连结,结合几何体的特征,直接求解与所成角的余弦值即可.【详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【点睛】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.2、C【解析】

由等比数列性质可知,进而根据对数的运算法则计算即可【详解】由题,因为等比数列,所以,则,故选:C【点睛】本题考查等比数列的性质的应用,考查对数的运算3、A【解析】

可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式4、C【解析】

对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.5、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.6、C【解析】

根据不等式的基本性质,对样本数据按从小到大排列为,取中间的平均数.【详解】,,则该组样本的中位数为中间两数的平均数,即.【点睛】考查基本不等式性质运用和中位数的定义.7、A【解析】

根据同角三角函数关系,进行求解即可.【详解】因为,故又因为是第二象限的角,故故.故选:A.【点睛】本题考查同角三角函数关系的简单使用,属基础题.8、C【解析】

根据长方体的外接球性质及球的表面积公式,化简即可得解.【详解】根据长方体的外接球直径为体对角线长,则,所以,则由球的表面积公式可得,故选:C.【点睛】本题考查了长方体外接球的性质及球表面积公式应用,属于基础题.9、D【解析】

根据不等式的性质判断.【详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【点睛】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.10、C【解析】

根据程序框图,转化为条件函数进行计算即可.【详解】程序对应的函数为y,若x≤0,由y=1得ex=1,得x=0,满足条件.若x>0,由y=2﹣lnx=1,得lnx=1,即x=e,满足条件.综上x=0或e,故选C.【点睛】本题主要考查程序框图的识别和应用,根据条件转化为分段函数是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,,即,又,两式相减得,.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.12、【解析】

根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】由,行驶了4小时,这只船的航行速度为海里/小时.【点睛】本题为解直角三角形应用题,利用直角三角形边角关系表示出两点间的距离,在用辅助角公式变形求值,最后利用速度公式求出结果.14、【解析】试题分析:若点A(3,1)和点B(4,6)分别在直线3x-2y+a=0两侧,则将点代入直线中是异号,则[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填写-7<a<0考点:本试题主要考查了二元一次不等式与平面区域的运用.点评:解决该试题的关键是根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式.15、3【解析】

根据点到直线的距离公式,代值求解即可.【详解】根据点到直线的距离公式,点到直线的距离为.故答案为:3.【点睛】本题考查点到直线的距离公式,属基础题.16、【解析】

求出,将展开即可得解.【详解】因为,,所以,所以.【点睛】本题主要考查了三角恒等式及两角和的正弦公式,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)见解析【解析】

(1)证明,EF∥平面PAC即得证;(2)证明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得证;(3)设AE,GC与BD分别交于M,N两点,证明N点为所找的H点.【详解】(1)证明:∵E、F分别是BC,BP中点,∴,∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵E、G分别是BC、AD中点,∴AE∥CG,∵AE⊄平面PCG,CG⊂平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC⊂平面PCG,EF⊄平面PCG,∴EF∥平面PCG,AE∩EF=E点,AE,EF⊂平面AEF,∴平面AEF∥平面PCG.(3)设AE,GC与BD分别交于M,N两点,易知F,N分别是BP,BM中点,∴,∵PM⊂平面PGC,FN⊄平面PGC,∴FN∥平面PGC,即N点为所找的H点.【点睛】本题主要考查空间平行位置关系的证明,考查立体几何的探究性问题的解决,意在考查学生对这些知识的理解掌握水平.18、(1)64,(2)x+y的最小值为18.【解析】试题分析:(1)利用基本不等式构建不等式即可得出;

(2)由,变形得,利用“乘1法”和基本不等式即可得出.试题解析:(1)由,得,又,,故,故,当且仅当即时等号成立,∴(2)由2,得,则.当且仅当即时等号成立.∴【点睛】本题考查了基本不等式的应用,熟练掌握“乘1法”和变形利用基本不等式是解题的关键.19、(1)(2)【解析】

(1)是关于m的一次函数,计算得到答案.(2)易知,讨论和两种情况计算得到答案.【详解】(1)对任意实数,恒成立,即对任意实数恒成立,是关于m的一次函数,,解得或,所以实数x的取值范围是.(2)存在,使得成立,即,显然.(i)当时,要使成立,即需成立,即需成立.,(当且仅当时等号成立),,.(ii)当时,要使成立,即需成立,即需成立,,(当且仅当时等号成立),.综上得实数m的取值范围是.【点睛】本题考查了恒成立问题和存在性问题,意在考查学生的综合应用能力.20、(1);(2)【解析】

(1)不等式可化为,而解集为,可利用韦达定理或直接代入即可得到答案;(2)法一:讨论和时,分离参数利用均值不等式即可得到取值范围;法二:利用二次函数在上大于等于0恒成立,即可得到取值范围.【详解】(1)法一:不等式可化为,其解集为,由根与系数的关系可知,解得,经检验时满足题意.法二:由题意知,原不等式所对应的方程的两个实数根为和4,将(或4)代入方程计算可得,经检验时满足题意.(2)法一:由题意可知恒成立,①若,则恒成立,符合题意。②若,则恒成立,而,当且仅当时取等号,所以,即.故实数的取值范围为.法二:二次函数的对称轴为.①若,即,函数在上单调递增,恒成立,故;②若,即,此时在上单调递减,在上单调递增,由得.故;③若,即,此时函数在上单调递减,由得,与矛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论