版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列是等比数列,若,且公比,则实数的取值范围是()A. B. C. D.2.中,下列结论:①若,则,②,③,④若是锐角三角形,则,其中正确的个数是()A.1 B.2 C.3 D.43.数列中,,,则().A. B. C. D.4.各棱长均为的三棱锥的表面积为()A. B. C. D.5.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.6.在中,角A、B、C所对的边分别为a、b、c,且若,则的形状是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形7.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.68.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度9.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.510.已知是圆的一条弦,,则()A. B. C. D.与圆的半径有关二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=log2(x+1)的定义域为_____.12.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.13.已知直线平分圆的周长,则实数________.14.已知数列满足,,,则数列的通项公式为________.15.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.16.若一组样本数据,,,,的平均数为,则该组样本数据的方差为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面四边形中,为的角平分线,,,.(1)求;(2)若的面积,求的长.18.己知向量,,设函数,且的图象过点和点.(1)当时,求函数的最大值和最小值及相应的的值;(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,若在有两个不同的解,求实数的取值范围.19.已知数列中,,点在直线上,其中.(1)令,求证数列是等比数列;(2)求数列的通项;(3)设、分别为数列、的前项和是否存在实数,使得数列为等差数列?若存在,试求出,若不存在,则说明理由.20.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当弦AB被点P平分时,写出直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由可得,结合可得结果.【详解】,,,,,,故选C.【点睛】本题主要考查等比数列的通项公式,意在考查对基础知识的掌握与应用,属于基础题.2、C【解析】
根据正弦定理与诱导公式,以及正弦函数的性质,逐项判断,即可得出结果.【详解】①在中,因为,所以,所以,故①正确;②,故②正确;③,故③错误;④若是锐角三角形,则,均为锐角,因为正弦函数在上单调递增,所以,故④正确;故选C【点睛】本题主要考查命题真假的判定,熟记正弦定理,诱导公式等即可,属于常考题型.3、B【解析】
通过取倒数的方式可知数列为等差数列,利用等差数列通项公式求得,进而得到结果.【详解】由得:,即数列是以为首项,为公差的等差数列本题正确选项:【点睛】本题考查利用递推关系式求解数列中的项的问题,关键是能够根据递推关系式的形式,确定采用倒数法得到等差数列.4、C【解析】
判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.【详解】由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即,
所以C选项是正确的.【点睛】本题考查棱锥的表面积,考查空间想象能力,计算能力,是基础题.5、A【解析】
根据图象求出即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A【点睛】本题考查了根据图象求函数解析式,利用周期求,代入最高点的坐标求是解题关键,属于基础题.6、C【解析】
直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.8、A【解析】
先将转化为,再判断的符号即可得出结论.【详解】解:因为,所以只需把向右平移个单位.故选:A【点睛】函数左右平移变换时,一是要注意平移方向:按“左加右减",如由的图象变为的图象,是由变为,所以是向左平移个单位;二是要注意前面的系数是不是,如果不是,左右平移时,要先提系数,再来计算.9、B【解析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.10、C【解析】
由数量积的几何意义,利用外心的几何特征计算即可得解.【详解】是圆的一条弦,易知在方向上的投影恰好为,所以=||||==2.故选C.【点睛】本题考查了数量积的运算,利用定义求解要确定模长及夹角,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、{x|x>﹣1}【解析】
利用对数的真数大于,即可得解.【详解】函数的定义域为:,解得:,故答案为:.【点睛】本题主要考查对数函数定义域,考查学生对对数函数定义的理解,是基础题.12、【解析】
如图
分别作于A,于C,于B,于D,
连CQ,BD则,,
又
当且仅当,即点A与点P重合时取最小值.
故答案选C.【点睛】13、1【解析】
由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.14、.【解析】
由题意得出,可得出数列为等比数列,确定出该数列的首项和公比,可求出数列的通项公式,进而求出数列的通项公式.【详解】设,整理得,对比可得,,即,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故答案为.【点睛】本题考查数列通项的求解,解题时要结合递推式的结构选择合适的方法来求解,同时要注意等差数列和等比数列定义的应用,考查分析问题和解决问题的能力,属于中等题.15、【解析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.16、【解析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)首先根据正弦定理得到,得到,在求即可.(2)首先根据得到,在根据余弦定理即可求出的长.【详解】(1)在中,,即.,或(舍去).所以.(2),.在中,由余弦定理知:【点睛】本题第一问考查正弦定理,第二问考查余弦定理,同时考查了学生的计算能力,属于中档题.18、(1)最大值为2,此时;最小值为-1,此时.(2)【解析】
(1)根据向量数量积坐标公式,列出函数,再根据函数图像过定点,求解函数解析式,当时,解出的范围,根据三角函数性质,可求最值;(2)根据三角函数平移伸缩变换,写出解析式,画出在上的图象,根据图像即可求解参数取值范围.【详解】解:(1)由题意知.根据的图象过点和,得到,解得,.当时,,,最大值为2,此时,最小值为-1,此时.(2)将函数的图象向右平移一个单位得,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得令,,如图当时,在有两个不同的解∴,即.【点睛】本题考查(1)三角函数最值问题(2)三角函数的平移伸缩变换,考查计算能力,考查转化与化归思想,考查数形结合思想,属于中等题型.19、(1)证明过程见详解;(2);(3)存在实数,使得数列为等差数列.【解析】
(1)先由题意得到,再由,得到,即可证明结论成立;(2)先由(1)求得,推出,利用累加法,即可求出数列的通项;(3)把数列an}、{bn}通项公式代入an+2bn,进而得到Sn+2T的表达式代入Tn,进而推断当且仅当λ=2时,数列是等差数列.【详解】(1)因为点在直线上,所以,因此由得所以数列是以为公比的等比数列;(2)因为,由得,故,由(1)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使数列是等差数列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴当且仅当λ=2时,数列是等差数列.【点睛】本题主要考查等差数列与等比数列的综合,熟记等比数列的定义,等比数列的通项公式,以及等差数列与等比数列的求和公式即可,属于常考题型.20、(1)(2)【解析】分析:(1)为的中点,故,所以斜率,由此求解直线方程(2)已知直线方程,利用半径和点到直线的距离,求解弦长.详解:(1)P为AB中点C(1,0),P(2,2)(2)的方程为由已知,又直线过点P(2,2)直线的方程为即x-y=0C到直线l的距离,点睛:利用圆与直线的几何性质解圆有关的问题常见解法,圆心到直线的距离、半径、弦长之间的关系为.21、(1);(2)厂家2020年的促销费用投入3万元时,厂家
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026春招:学习成长企划顾问题目及答案
- 2026年桥梁设计中的地震动参数研究
- 2026年桥梁设计中的非线性分析与优化
- 2026年未来电气传动控制的研究方向
- 2026春招:维修技术员笔试题及答案
- 贩毒与吸毒的法律问题
- 住院部病患护理质量评估
- 2026年邯郸科技职业学院单招综合素质考试备考试题带答案解析
- 2026年黑龙江旅游职业技术学院单招职业技能考试参考题库带答案解析
- 生物仿制药的研发与产业化
- 安保部月度工作总结
- 【语文】四川省成都市实验小学小学一年级上册期末试卷(含答案)
- GB/T 28159-2025电子级磷酸
- 以人工智能赋能新质生产力发展
- 槐乡五月课件
- 人防平战转换课件
- 2025年军事理论知识竞赛题库及答案
- 2025年4月自考00612日本文学选读试题
- 2025至2030PA12T型行业发展趋势分析与未来投资战略咨询研究报告
- 精神科暗示治疗技术解析
- 2025年人工智能训练师(三级)职业技能鉴定理论考试题库(含答案)
评论
0/150
提交评论