安徽省庐巢七校联盟2022-2023学年数学高一下期末考试模拟试题含解析_第1页
安徽省庐巢七校联盟2022-2023学年数学高一下期末考试模拟试题含解析_第2页
安徽省庐巢七校联盟2022-2023学年数学高一下期末考试模拟试题含解析_第3页
安徽省庐巢七校联盟2022-2023学年数学高一下期末考试模拟试题含解析_第4页
安徽省庐巢七校联盟2022-2023学年数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.2.公差不为零的等差数列{an}的前n项和为Sn,若a3是a2与a6的等比中项,S3=3,则S8=()A.36 B.42 C.48 D.603.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形4.=()A. B. C. D.5.已知的三个内角所对的边分别为,满足,且,则的形状为()A.等边三角形 B.等腰直角三角形C.顶角为的等腰三角形 D.顶角为的等腰三角形6.点是角终边上一点,则的值为()A. B. C. D.7.长方体共顶点的三个相邻面面积分别为,这个长方体的顶点在同一个球面上,则这个球的表面积为()A. B. C. D.8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.9.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.10.在三棱锥中,已知所有棱长均为,是的中点,则异面直线与所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与圆相交于,两点,且(其中为原点),则的值为________.12.______.13.数列中,已知,50为第________项.14.在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________.15.若存在实数使得关于的不等式恒成立,则实数的取值范围是____.16.函数的定义域是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点,,,其外接圆为圆.(1)求圆的方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程;(3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,,使得点是线段的中点,求圆的半径的取值范围.18.已知数列为等差数列,且.(1)求数列的通项公式;(2)求数列的前项和.19.大豆,古称菽,原产中国,在中国已有五千年栽培历史.2019年春,为响应中国大豆参与世界贸易的竞争,某市农科院积极研究,加大优良品种的培育工作,其中一项基础工作就是研究昼夜温差大小与大豆发芽率之间的关系.为此科研人员分别记录了7天中每天50粒大豆的发芽数得如下数据表格:日期4月3日4月4日4月5日4月6日4月7日4月8日4月9日温差(℃)89101211813发芽数(粒)21252632272033科研人员确定研究方案是:从7组数据中选5组数据求线性回归方程,再用求得的回归方程对剩下的2组数据进行检验.(1)若选取的是4月4日至4月8日五天数据,据此求关于的线性回归方程;(2)若由线性回归方程得到的估计数据与实际数据的误差绝对值均不超过1粒,则认为得到的线性回归方程是可靠的,请检验(1)中回归方程是否可靠?注:.参考数值:,.20.已知不共线的向量,,,.(1)求与的夹角的余弦值;(2)求.21.已知向量的夹角为60°,且.(1)求与的值;(2)求与的夹角.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

求出函数的周期,函数的奇偶性,判断求解即可.【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.2、C【解析】

设出等差数列的公差d,根据a3是a2与a6的等比中项,S3=3,利用等比数列的性质和等差数列的前n项和的公式化简得到关于等差数列首项和公差方程组,求出方程组的解集即可得到首项和公差,然后再利用等差数列的前n项和的公式求出S8即可【详解】设公差为d(d≠0),则有,化简得:,因为d≠0,解得a1=-1,d=2,则S8=-82=1.故选:C.【点评】此题考查运用等差数列的前n项和的公式及等比数列的通项公式化简求值,意在考查公式运用,是基础题.3、C【解析】

由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.4、A【解析】

试题分析:由诱导公式,故选A.考点:诱导公式.5、D【解析】

先利用同角三角函数基本关系得,结合正余弦定理得进而得B,再利用化简得,得A值进而得C,则形状可求【详解】由题即,由正弦定理及余弦定理得即故整理得,故故为顶角为的等腰三角形故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题6、A【解析】

利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【详解】由三角函数的定义可得,由诱导公式可得.故选A.【点睛】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.7、A【解析】

设长方体的棱长为,球的半径为,根据题意有,再根据球的直径是长方体的体对角线求解.【详解】设长方体的棱长为,球的半径为,根据题意,,解得,所以,所以外接球的表面积,故选:A【点睛】本题主要考查了球的组合体问题,还考查了运算求解的能力,属于基础题.8、B【解析】

先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.9、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.10、A【解析】

取的中点,连接、,于是得到异面直线与所成的角为,然后计算出的三条边长,并利用余弦定理计算出,即可得出答案.【详解】如下图所示,取的中点,连接、,由于、分别为、的中点,则,且,所以,异面直线与所成的角为或其补角,三棱锥是边长为的正四面体,则、均是边长为的等边三角形,为的中点,则,且,同理可得,在中,由余弦定理得,因此,异面直线与所成角的余弦值为,故选A.【点睛】本题考查异面直线所成角的计算,利用平移法求异面直线所成角的基本步骤如下:(1)一作:平移直线,找出异面直线所成的角;(2)二证:对异面直线所成的角进行说明;(3)三计算:选择合适的三角形,并计算出三角形的边长,利用余弦定理计算所求的角.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【点睛】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.12、【解析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.13、4【解析】

方程变为,设,解关于的二次方程可求得。【详解】,则,即设,则,有或取得,,所以是第4项。【点睛】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。14、【解析】

设滚动后圆的圆心为C,切点为A,连接CP.过C作与x轴正方向平行的射线,交圆C于B(2,1),设∠BCP=θ,则根据圆的参数方程,得P的坐标为(1+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(1,1),算出,结合三角函数的诱导公式,化简可得P的坐标为,即为向量的坐标.【详解】设滚动后的圆的圆心为C,切点为,连接CP,过C作与x轴正方向平行的射线,交圆C于,设,∵C的方程为,∴根据圆的参数方程,得P的坐标为,∵单位圆的圆心的初始位置在,圆滚动到圆心位于,,可得,可得,,代入上面所得的式子,得到P的坐标为,所以的坐标是.故答案为:.【点睛】本题考查圆的参数方程,平面向量坐标表示的应用,解题的关键是根据数形结合找到变量的角度,属于中等题.15、【解析】

先求得的取值范围,将题目所给不等式转化为含的绝对值不等式,对分成三种情况,结合绝对值不等式的解法和不等式恒成立的思想,求得的取值范围.【详解】由于,故可化简得恒成立.当时,显然成立.当时,可得,,可得且,可得,即,解得.当时,可得,可得且,可得,即,解得.综上所述,的取值范围是.【点睛】本小题主要考查三角函数的值域,考查含有绝对值不等式恒成立问题,考查存在性问题的求解策略,考查函数的单调性,考查化归与转化的数学思想方法,属于难题.16、.【解析】

由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得,即解得,故函数的定义域为.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或(3)【解析】

试题分析:(1)借助题设条件直接求解;(2)借助题设待定直线的斜率,再运用直线的点斜式方程求解;(3)借助题设建立关于的不等式,运用分析推证的方法进行求解.试题解析:(1)的面积为2;(2)线段的垂直平分线方程为,线段的垂直平分线方程为,所以外接圆圆心,半径,圆的方程为,设圆心到直线的距离为,因为直线被圆截得的弦长为2,所以.当直线垂直于轴时,显然符合题意,即为所求;当直线不垂直于轴时,设直线方程为,则,解得,综上,直线的方程为或.(3)直线的方程为,设,,因为点是线段的中点,所以,又,都在半径为的圆上,所以因为关于,的方程组有解,即以为圆心,为半径的圆与以为圆心,为半径的圆有公共点,所以,又,所以对成立.而在上的值域为,所以且.又线段与圆无公共点,所以对成立,即.故圆的半径的取值范围为.考点:直线与圆的位置关系等有关知识的综合运用.18、(1);(2).【解析】试题分析:(1)由于为等差数列,根据已知条件求出的第一项和第三项求得数列的公差,即得数列的通项公式,移项可得数列的通项公式;(2)由(1)可知,通过分组求和根据等差数列和等比数列的前项和公式求得的前项和.试题解析:(1)设数列的公差为,∵,∴,∴,∴.(2)考点:等差数列的通项公式及数列求和.19、(1);(2)(1)中回归方程是可靠的.【解析】

(1)运用已知题中所给的数值,结合所给的计算公式、数表提供的数据求得与的值,进而写出线线回归方程;(2)在(1)中求得的线性回归方程中,分别取x=8与13求得y值,进一步求得残差得结论.【详解】因为,.,所以,.因此关于的线性回归方程;(2)取x=8,得,此时;取x=13,得,此时∴(1)中回归方程是可靠的.【点睛】本题考查线性回归方程的求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论