甘肃省靖远一中2023年高一数学第二学期期末考试试题含解析_第1页
甘肃省靖远一中2023年高一数学第二学期期末考试试题含解析_第2页
甘肃省靖远一中2023年高一数学第二学期期末考试试题含解析_第3页
甘肃省靖远一中2023年高一数学第二学期期末考试试题含解析_第4页
甘肃省靖远一中2023年高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若变量,且满足约束条件,则的最大值为()A.15 B.12 C.3 D.2.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.3.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.4.在中,角A、B、C所对的边分别为a、b、c,且若,则的形状是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形5.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.6.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()A.640 B.520 C.280 D.2407.l:的斜率为A.﹣2 B.2 C. D.8.已知是等差数列,,其前10项和,则其公差A. B. C. D.9.“结绳计数”是远古时期人类智慧的结晶,即人们通过在绳子上打结来记录数量.如图所示的是一位农民记录自己采摘果实的个数.在从右向左依次排列的不同绳子上打结,满四进一.根据图示可知,农民采摘的果实的个数是()A.493 B.383 C.183 D.12310.已知向量,,,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一组数1,2,m,6,7的平均数为4,则这组数的方差为______.12.已知直线与相互垂直,且垂足为,则的值为______.13.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________(精确到).14.一组样本数据8,10,18,12的方差为___________.15.已知角的终边上一点P落在直线上,则______.16.已知直线与圆相交于,两点,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.18.已知数列满足:,(1)求,的值;(2)求数列的通项公式;(3)设,数列的前n项和,求证:19.已知直线l过点(1,3),且在y轴上的截距为1.

(1)求直线l的方程;

(2)若直线l与圆C:(x-a)2+(y+a)2=5相切,求实数a的值.20.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.21.已知数列的前项和,且满足:,.(1)求数列的通项公式;(2)若,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

作出可行域,采用平移直线法判断何处取到最大值.【详解】画出可行域如图阴影部分,由得,目标函数图象可看作一条动直线,由图形可得当动直线过点时,.故选A.【点睛】本题考查线性规划中线性目标函数最值的计算,难度较易.求解线性目标函数的最值时,采用平移直线法是最常规的.2、B【解析】

三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.3、C【解析】

由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【点睛】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.4、C【解析】

直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.5、D【解析】

首先根据题意得到,,结合选项即可找到答案.【详解】因为,所以.因为,所以.故选:D【点睛】本题主要考查不等式的性质,属于简单题.6、B【解析】

由频率分布直方图得到初赛成绩大于90分的频率,由此能求出获得复赛资格的人数.【详解】初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,由频率分布直方图得到初赛成绩大于90分的频率为:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴获得复赛资格的人数为:0.1×800=2.故选:B.【点睛】本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,是基础题.7、B【解析】

先化成直线的斜截式方程即得直线的斜率.【详解】由题得直线的方程为y=2x,所以直线的斜率为2.故选:B【点睛】本题主要考查直线斜率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.8、D【解析】,解得,则,故选D.9、C【解析】

根据题意将四进制数转化为十进制数即可.【详解】根据题干知满四进一,则表示四进制数,将四进制数转化为十进制数,得到故答案为:C.【点睛】本题以数学文化为载体,考查了进位制等基础知识,注意运用四进制转化为十进制数,考查运算能力,属于基础题.10、D【解析】

直接利用向量的数量积转化求解向量的夹角即可.【详解】因为,所以与的夹角为.故选:D.【点睛】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意.所以方差为.故答案为:.【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.12、【解析】

先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【点睛】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.13、6【解析】

先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.14、14【解析】

直接利用平均数和方差的公式,即可得到本题答案.【详解】平均数,方差.故答案为:14【点睛】本题主要考查平均数公式与方差公式的应用.15、【解析】

由于角的终边上一点P落在直线上,可得,根据二倍角公式以及三角函数基本关系,可得,代入,可求得结果.【详解】因为角的终边上一点P落在直线上,所以,.故答案为:【点睛】本题考查同角三角函数的基本关系,巧用“1”是解决本题的关键.16、.【解析】

将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行的性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形又平面平面又,平面平面平面,平面平面平面平面(2)连接交于点,连接平面,平面又四边形为正方形平面,平面即为与平面所成角且又即与平面所成角为:【点睛】本题考查线面平行的证明、直线与平面所成角的求解,涉及到面面平行的判定与性质、线面垂直的判定与性质的应用;求解直线与平面所成角的关键是能够通过垂直关系将所求角放入直角三角形中来进行求解.18、(1);;(2)(3)见证明;【解析】

(1)令可求得;(2)在已知等式基础上,用代得另一等式,然后相减,可求得,并检验一下是否适合此表达式;(3)用裂项相消法求和.【详解】解:(1)由已知得,∴(2)由,①得时,,②①-②得∴,也适合此式,∴().(3)由(2)得,∴∴∵,∴∴【点睛】本题考查由数列的通项公式,考查裂项相消法求和.求通项公式时的方法与已知求的方法一样,本题就相当于已知数列的前项和,要求.注意首项求法的区别.19、(1)y=2x+1;(2)a=-2或【解析】

(1)求得直线的斜率,再由点斜式方程可得所求直线方程;(2)运用直线和圆相切的条件,即圆心到直线的距离等于半径,解方程可得所求值.【详解】(1)直线l过点(1,3),且在y轴上的截距为1,可得直线l的斜率为=2,则直线l的方程为y3=2(x1),即y=2x+1;

(2)若直线l与圆C:(xa)2+(y+a)2=5相切,

可得圆心(a,a)到直线l的距离为,即有

=,解得a=2或.【点睛】本题考查直线方程和圆方程的运用,考查直线和圆相切的条件,考查方程思想和运算能力,属于基础题.20、(I);(II);(III)【解析】

(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论