




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,是边上的一点,,若为锐角,的面积为20,则()A. B. C. D.2.直线与圆相交于点,则()A. B. C. D.3.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.4.函数(其中为自然对数的底数)的图象大致为()A. B. C. D.5.在区间上随机取一个数,使得的概率为()A. B. C. D.6.已知正数、满足,则的最小值为()A. B. C. D.7.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位8.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°9.已知幂函数过点,则的值为()A. B.1 C.3 D.610.如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集是___________12.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.13.已知,则____.14.已知函数,则函数的最小值是___.15.已知一个几何体的三视图如图所示,其中正视图是等腰直角三角形,则该几何体的体积为__________.16.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.18.已知数列an的前n项和为Sn,a1(1)分别求数列an(2)若对任意的n∈N*,19.设函数,其中,.(1)求的周期及单调递减区间;(2)若关于的不等式在上有解,求实数的取值范围.20.为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?(2)从所抽取的样本中身高在和的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?21.已知数列满足,,.(1)求证数列是等比数列,并求数列的通项公式;(2)设,数列的前项和,求证:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先利用面积公式计算出,计算出,运用余弦定理计算出,利用正弦定理计算出,在中运用正弦定理求解出.【详解】解:由的面积公式可知,,可得,为锐角,可得在中,,即有,由可得,由可知.故选.【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.2、D【解析】
利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【点睛】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.3、B【解析】
先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.4、C【解析】
由题意,可知,即为奇函数,排除,,又时,,可排除D,即可选出正确答案.【详解】由题意,函数定义域为,且,即为奇函数,排除,,当时,,,即时,,可排除D,故选C.【点睛】本题考查了函数图象的识别,考查了函数奇偶性的运用,属于中档题.5、A【解析】则,故概率为.6、B【解析】
由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.7、D【解析】
根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题8、B【解析】
连接,可证是异面直线与所成的角或其补角,求出此角即可.【详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【点睛】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.9、C【解析】
设,代入点的坐标,求得,然后再求函数值.【详解】设,由题意,,即,∴.故选:C.【点睛】本题考查幂函数的解析式,属于基础题.10、A【解析】
连结BC1,交B1C于O,连结A1O,则∠BA1O是直线A1B与平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出结果.【详解】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故选A.【点睛】本题考查线面角、二面角的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.12、160【解析】
∵某个年级共有980人,要从中抽取280人,∴抽取比例为280980∴此样本中男生人数为27故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题13、【解析】
由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.14、5【解析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.15、【解析】
首先根据三视图还原几何体,再计算体积即可.【详解】由三视图知:该几何体是以底面是直角三角形,高为的三棱锥,直观图如图所示:.故答案为:【点睛】本题主要考查三视图还原直观图,同时考查了锥体的体积计算,属于简单题.16、【解析】
向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【点睛】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【详解】(1)由得,,所以,,故的定义域为(答案写成“”也正确)(2)因为,且是第三象限角,所以由可解得,.故.【点睛】本题考查三角函数的性质,考查同角间的三角函数关系,考查应用两角差的余弦公式和二倍角公式求值.三角函数求值时一般要先化简再求值,这样计算可以更加简便,保证正确.18、(1)an=3n-1【解析】
(1)设等差数列bn公差为d,则b解得d=3,bn当n≥2时,an=2Sn-1a2=2a1+1=3aan是以1为首项3为公比的等比数列,则.;(2)由(1)知,Sn原不等式可化为k≥6(n-2)若对任意的n∈N*恒成立,问题转化为求数列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大项为第3项,c3=62719、(1),;(2)【解析】
(1)利用坐标形式下向量的数量积运算以及二倍角公式、辅助角公式将化简为的形式,根据周期计算公式以及单调性求解公式即可得到结果;(2)分析在的值域,根据能成立的思想得到与满足的不等关系,求解出的范围即可.【详解】(1)∵,∴,∴的周期为,令,则,的单调递减区间为(2)∵,∴,在上递增,在上递减,且,∴,∴,即,若在上有解,则故:,解得.【点睛】本题考查向量与三角函函数的综合应用,其中着重考查了使用三角恒等变换进行化简以及利用正弦函数的性质分析值域从而求解参数范围,对于转化与计算的能力要求较高,难度一般.20、(1)12600;(2).【解析】
(1)由频率分布直方图知,身高正常的频率,于是可得答案;(2)先计算出样本容量,再找出样本中身高在中的人数,从而利用古典概型公式得到答案.【详解】(1)由频率分布直方图知,身高正常的频率为0.7,所以估计总体,即该地区所有高二年级男生中身高正常的频率为0.7,所以该地区高二男生中身高正常的大约有人.(2)由所抽取样本中身高在的频率为,可知身高在的频率为,所以样本容量为,则样本中身高在中的有3人,记为,身高在中的有2人,记为,从这5人中再选2人,共有,,,,,,,,,10种不同的选法,而且每种选法都是互斥且等可能的,所以,所选2人中至少有一人身高大于185的概率.【点睛】本题主要考查频率分布直方图,古典概型的相关计算,意在考查学生的转化能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内科护理学题库(附参考答案)
- 旅游产品及服务提供合同
- 农机租赁与维修服务合作合同书
- 财务管理咨询服务的协议
- 江苏移动2025春季校园招聘笔试参考题库附带答案详解
- 2025湖南长沙振望投资发展有限公司招聘8人笔试参考题库附带答案详解
- 2025广西玉柴铸造有限公司实习生招聘100人笔试参考题库附带答案详解
- 2025年河南空港数字城市开发建设有限公司第一批社会公开招聘20人笔试参考题库附带答案详解
- 2025年威海光明电力服务有限公司招聘(约40人)笔试参考题库附带答案详解
- 2025年3月湖南自由贸易试验区临空产业投资集团有限公司招聘6人笔试参考题库附带答案详解
- 有限空间作业安全隐患排查清单
- 基于交通冲突的信号交叉口交通安全评价研究论文设计
- 小学心理健康教育课件《微笑的力量》
- 心理健康案例分析试题
- 继电保护单选练习题库及答案
- 新疆功能性高分子材料项目可行性研究报告
- 小升初第一讲-简便运算课件
- 基于Navier-Stokes方程的图像处理与应用研究
- 铜螺母标准相关参考内容
- 八大作业票填写模板
- 三年级小机灵杯试题(常用版)
评论
0/150
提交评论