版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级下学期期末数学试题一、单选题1.一个关于
x
的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥12.到△ABC
的三边距离相等的点是△ABC
的(C.x>3D.x≥3)A.三边中线的交点B.三条角平分线的交点C.三边上高的交点 D.三边垂直平分线的交点3.以下分别是回收、节水、绿色包装、低碳
4
个标志,其中是中心对称图形的是().A.B.C.D.4.计算的结果为()A.B.C.D.5.若分式无意义,则
x
的值是()A.0 B.1 C.-16.若一个正多边形的每一个外角都等于
36°,则它是( )D.A.正九边形 B.正十边形 C.正十一边形 D.正十二边形7.如图,在▱ABCD
中,F
是
AD
上的一点,CF=CD.若∠B=72°,则∠AFC
的度数是()A.144°B.108°C.102°D.78°下列各式从左到右的变形中,是因式分解的为(B.C. D.).9.若不等式组有解,那么
的取值范围是()A.B.C.D.10.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有( )A.1
个二、填空题B.2
个C.3
个D.4
个分解因式:
.已知点
M
的坐标为(2,1),若将点
M
关于原点的对称点先向右平移
3
个单位长度,再向下平移
2个单位长度,则所得点的坐标为
.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入
小球时有水溢出.14.在
ABC
中,∠A=40°,AB
的垂直平分线分别交
AB,AC
边于点
D,E,若
AE=BC,则=
.15.在△ABC
中,∠C=90°,BC=6,AC=8,顺次连接△ABC
各边中点,得到的三角形面积是
.16.已知非零实数
x,y
满足,则的值等于
.17.如图,在平行四边形
ABCD
中,AB=3,AD=4,∠ABC=60°,过
BC的中点
E作
EF⊥AB
于点
F,交
DC
的延长线于点
G,则
DE=
.三、解答题18.解不等式组:19.解方程:.20.先化简,再求值:,其中,.21.如图,在△ABC
和△DCB中,∠A=∠D=90°,AC=BD,AC
与
BD
相交于点
O.求证:△ABC≌△DCB;求证:△OBC是等腰三角形.22.图,△ABC
是边长为
2
的等边三角形,将△ABC
沿直线
BC
平移到△DCE
的位置,连接BD,(1)△ABC
平移的距离为
;(2)求
BD
的长.23.在四边形 中,、交于点 ,,.(1)证明:四边形是平行四边形;(2)过点 作交于点 ,连接.若,求的度数.在
2019年春季环境整治活动中,某社区计划对面积为 的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的
2
倍,并且在独立完成面积为 区域的绿化时,甲队比乙队少用
5天.求甲、乙两工程队每天能完成绿化的面积;设甲工程队施工
天,乙工程队施工天,刚好完成绿化任务,求
关于
的函数关系式;在(2)的条件下,若甲队每天绿化费用是
0.6
万元,乙队每天绿化费用为
0.25
万元,且甲乙两队施工的总天数不超过
25
天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.在△ABC中,AB=AC,∠A=60°,点
D
是线段
BC的中点,∠EDF=120°,DE与线段
AB相交于点
E,DF与线段
AC(或
AC的延长线)相交于点
F.如图
1,若
DF⊥AC,垂足为
F,AB=4,求
BE
的长;如图
2,将(1)中的∠EDF
绕点
D
顺时针旋转一定的角度,DF仍与线段
AC
相交于点F.求证: ;(3)如图
3,将(2)中的∠EDF
继续绕点
D
顺时针旋转一定的角度,使
DF
与线段
AC
的延长线交于点
F,作
DN⊥AC
于点
N,若
DN=FN,求证: .答案解析部分【答案】C【答案】B【答案】C【答案】A【答案】D【答案】B【答案】B【答案】C【答案】C【答案】B【答案】12.【答案】(1,-3)【答案】10【答案】60°或
60度【答案】6【答案】417.【答案】.18.【答案】解:解不等式①,得.解不等式②,得.∴原不等式组的解集为 .【答案】解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得
x=0.检验:把
x=0
代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0【答案】解:.当 , 时,原式21.【答案】(1)证明:在.与中(2)解:,∴,∴OB=OC,即是等腰三角形.22.【答案】(1)2(2)解:∵,∴,∴ ,∵ ,∴是以
BE
为斜边的直角三角形,∴由勾股定,∵,∴,∴理得:,即:,∴BD的长为.23.【答案】(1)解:∵,∴.即在和中,,∴,∴,∴四边形是平行四边形;(2)解:∵,即,∴在和中,,∴∴,即.∵,∴,∴.∵四边形是平行四边形,∴,∴.24.【答案】(1)解:设乙工程队每天能完成绿化的面积为则甲工程队每天能完成绿化面积为 .,依题意得:,解得经检验:是原方程的根.答:甲、乙两工程队每天能完成绿化面积分别为和(2)解:由(1)得:(3)解:由题意可知:即解得总费用值随 值的增大而增大.当天时,答:甲工程队施工
15
天,乙工程队施工
10
天,则施工总费用最低,最低费用为
11.5
万.25.【答案】(1)解:如图
1,∵AB=AC,∠A=60°,∴△ABC
是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4.∵点
D
是线段
BC
的中点,∴BD=DC= BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°-60°-90°-120°=90°,∴∠BED=90°,∴BE=BD×cos∠B=2×cos60°=1;(2)解:过点
D
作
DM⊥AB
于
M,作
DN⊥AC于
N,如图
2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°-60°-90°-90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∴△MBD≌△NCD,∴BM=CN,DM=DN.在△EMD
和△FND
中,∴△EMD≌△FND,∴EM=FN,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD= BC= AB;(3)解:过点
D
作
DM⊥AB
于
M,如图
3.同(1)可得:∠B=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- FZT 54133-2020无锑涤纶预取向丝(POY)标准深度与行业前瞻研究报告
- 《GBT 14492-2008一次性使用电石包装钢桶》专题研究报告
- 《GB 4706.33-2008家用和类似用途电器的安全 商用电深油炸锅的特殊要求》专题研究报告
- 道路安全教育培训课内容课件
- 道路危险品运输安全培训课件
- 2026年鲁教版八年级数学上册期末试卷含答案
- 道德的介绍教学课件
- 2026年广东省茂名市高职单招语文试题及答案
- 迪奥dior介绍教学课件
- 新高一化学暑假衔接(人教版):第17讲 元素周期律【教师版】
- 教师三笔字培训课件
- 少年宫乒乓球活动记录文本
- 各品牌挖掘机挖斗连接尺寸数据
- 2021-2022学年云南省曲靖市部编版六年级上册期末考试语文试卷(原卷版)
- 参会人员名单(模板)
- 飞机大战游戏设计与实现
- 数学课如何提高课堂教学容量
- 监理规划毕业设计(论文)
- 京港澳高速公路段改扩建工程施工保通方案(总方案)
- 医用设备EMC培训资料课件
- RoHS培训资料课件
评论
0/150
提交评论