版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
构建数学模型解决实际问题“能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型解决实际问题基本程序如下:解题步骤如下:1、阅读、审题:要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。2、建模:将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。3、合理求解纯数学问题4、解释并回答实际问题中学阶段主要求解下面几类应用题,本文以2022年全国各地中考试题为例供同学们学习:数与式模型例1、(2022台州)水是生命之源,水资源的不足严重制约我市的工业发展,解决缺水的根本在于节约用水,提高工业用水的重复利用率、降低每万元工业产值的用水量都是有力举措。据《台州日报》4月26日报导,目前,我市工业用水每天只能供应10万吨,重复利用率为45℅,先进地区为75℅,工业每万元产值平均用水25吨,而先进地区为10吨,可见我市节水空间还很大。若我市工业用水重复利用率(为方便,假设工业用水只重复利用一次)由目前的45℅增加到60℅,那么每天还可以增加多少吨工业用水?写出工业用水重复利用率由45℅增加到x℅(45<x<100),每天所增加的工业用水y(万吨)与之间的函数关系式。如果我市工业用水重复利用率及每万元工业产值平均用水量都达到先进地区水平,那么与现有水平比较,仅从用水的角度我市每天能增加多少万元工业产值?解:(1)100000×(1+60%)-100000×(1+45%)=100000×15%=15000(吨)答:每天还可以增加15000吨工业用水(2)y=10(x%-45%)=-(45<x<100)(3)(万元)答:每天能增加11700万元工业产值。二、方程模型例2、(2022陕西)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.
请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?解:(1)设这个球队胜场,则平了(8-1-)场.根据题意,得3+(8-1-)=17.解之,得=5.答:前8场比赛中,这个球队共胜了5场.(2)打满14场比赛最高能得17+(14-8)×3=35分.(3)由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标.∴在以后的比赛中这个球队至要胜3场.例3、(2022南通)小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即千瓦)的节能灯,售价49元/盏;另一种是40瓦(即千瓦)的白炽灯,售价为18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦元。⑴设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费)⑵小刚想在这两种灯中选购一盏①当照明时间是多少时,使用两种灯的费用一样多;②试用特殊值推断照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低;⑶小刚想在这两种灯中选购两盏假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由。解:(1)用一盏节能灯的费用是(49+元,用一盏白炽灯的费用是(18+元.(2)①由题意,得49+=18+,解得x=2000,所以当照明时间是2000小时时,两种灯的费用一样多.②取特殊值x=1500小时,则用一盏节能灯的费用是49+×1500=(元),用一盏白炽灯的费用是18+×1500=48(元),所以当照明时间小于2000小时时,选用白炽灯费用低;取特殊值x=2500小时,则用一盏节能灯的费用是49+×2500=(元),用一盏白炽灯的费用是18+×2500=68(元),所以当照明时间超过2000小时时,选用节能灯费用低.(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+×3000=元;②如果选用两盏白炽灯,则费用是36+×3000=96元;③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.费用是67+×2800+×200=元综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.例4、(2022绍兴市)初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.解:设去年A超市销售额为x万元,B超市销售额为y万元,由题意得解得100(1+15%)=115(万元),50(1+10%)=55(万元).答:A,B两个超市今年“五一节”期间的销售额分别为115万元,55万元.例5、(重庆市2022年)某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然汽的装置,每辆车改装价格为4000元。公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的。问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?、解;(1)设公司第一次改装了辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为依题意得方程组:化简得:解得:答;公司共改装了40辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降了40%。(2)设一次性改装后,天可以收回成本,则:100×80×40%×=4000×100解得:=125(天)答:125天后就可以从节省的燃料费中收回成本。例6、(2022哈尔滨)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量..解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部,根据题意,得:
…
答:有两种购买方法:甲种手机购买30部,乙种手机购买10部;或甲种手机购买20部,乙种手机购买20部.(2)根据题意,得:
解得:…………
答:若甲种型号手机购买26部手,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部手,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部手,则乙种型号手机购买8部,丙种型号手机购买4部;例7、(2022万州)小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时?
解:设王老师的步行速度为x千米/时,则骑自行车速度为3x千米/时。依题意得:20分钟=小时解得:x=5经检验:x=5是所列方程的解∴3x=3×5=15答:王老师的步行速度及骑自行车速度各为5千米/时和15千米/时例8、(2022朝阳)某校初三(2)班的师生到距离10千米的山区植树,出发1个半小时后,张锦同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点.如果张锦同学骑车的速度比队伍步行的速度的2倍还多2千米.(1)求骑车与步行的速度各是多少?(2)如果张锦同学要提前10分钟到达植树地点,那么他骑车的速度应比原速度快多少?解:(1)设步行的速度为x千米/时.根据题意得.解得,.经检验,都是原方程的解,但不合题意,舍去.当x=4时,2x+2=10.答:队伍步行的速度是每小时4千米,张锦骑车的速度是每小时10千米.(2)由(1)可得张锦骑车用时:(小时),若提前10分钟,即用时小时.则骑车速度为:,12-10=2(千米/时).答:如果张锦提前10分钟到达,那么骑车速度应比原速度每小时快2千米.三、不等式模型例9(2022湖州)年织里某童装加工企业今年五月份工人每天平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%。为了提高工人的劳动积极性,按时完成外贸订货任务,企业计划从六月份起进行工资改革。改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元。(1)为了保证所有工人的每月工资收入不低于市有关部门规范的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?(2)根据经营情况,企业决定每加工1套童装奖励5元。工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?解(1)设企业每套奖励x元 由题意得:200+60%·150x≥450 解得:x≥ 因此该企业至少应奖励元 (2)设小张在六月份加工y套 由题意得:200+5y≥1200 解得:y≥200 答:小张在六月份应至少加工200套。例10、(2022南昌)仔细观察下图,认真阅读对话:小朋友,本来你用10元钱买一盒饼干小朋友,本来你用10元钱买一盒饼干是有多的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干打9折,两样东西请拿好!还有找你的8角钱.阿姨,我买一盒饼干和一袋牛奶(递上10元钱).根据对话的内容,试求出饼干和牛奶的标价各是多少元?解:设饼干的标价为每盒x元,牛奶的标价为每袋y元,则x+y>10,………………(1)+y=10-,……(2)x<10.………(3)由(2)得y=-.……(4)把(4)代入(1)得:-+x>10,解得x>8.由(3)综合得∴8<x<10.又∵x是整数,∴x=9.把x=9代入(4)得:y=-×9=(元)答:一盒饼干标价9元,一袋牛奶标价元四、函数模型例11、(2022河北)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台。先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区。两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金每台乙形收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议。解:(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台;派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台。∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10)=200x+74000x的取值范围是:10≤x≤30(x是正整数)(2)由题意得200x+74000≥79600解不等式得x≥28由于10≤x≤30(x是正整数)∴x取28,29,30这三个值。∴有3种不同的分配方案。①当x=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B地区的甲型收割机为18台,乙型收割机为2台。②当x=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B地区的甲型收割机为19台,乙型收割机为1台。③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区。(3)由于一次函数y=200x+74000的值y是随着x的增大而增大的,所以当x=30时,y取得最大值。如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时,y=6000+74000=80000。建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高。例12、(2022芜湖)的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:求出y与x的函数关系式.(纯利润=总收入-总支出)当y=106000时,求该厂在这个月中生产产品的件数.解:①依题意得:y=·2-8000y=19x-8000∴所求的函数关系式为y=19x-8000(x>0且x是整数)②当y=106000时,代入得:106000=19x-800019x=114000x=6000∴这个月该厂生产产品6000件.例13(2022四川)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(I)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(II)若要使车间每天所获利润不底于24,000元,你认为至少要派多少名工人去制造乙种零件才合适?解:(1)依题意,是(2)由题意:有解得答:至少要派15名工人去制造乙种零件才合适.五、几何模型例14(2022宁波)据气象台预报,一强台风的中心位于宁波(指城区,下同)东南方向()千米的海面上,目前台风中心正以20千米/时的速度向北偏西60°的方向移动,距台风中心50千米的圆形区域均会受到强袭击.已知宁海位于宁波正南方向72千米处,象山位于宁海北偏东60°方向56千米处.请问:宁波、宁海、象山是否会受这次台风的强袭击?如果会,请求出受强袭击的时间;如果不会,请说明理由.(为解决问题,须画出示意图,现已画出其中一部分,请根据需要,把图形画完整)__(台风中心)_(宁海)_(宁波)_P_B_A解:补画出示意图经过点.如图过作东西方向(水平)直线与(南北)延长线交于,延长台风中心移动射线与相交于.∵,45°,,∴,.∵30°,∴30°=,∴与重合,∴台风中心必经过宁海.∴经过宁海的时间为(时).如图为象山,由题意可得30°+30°=60°,到的距离60°=,∴象山会受到此次台风强袭击求受袭击时间可先求以为圆心,为半径的圆与相交的弦长等于,∴受袭击时间(时)∵到的距离60°=,∴宁波不会遭受此次台风的强袭击.综上所述:宁波不会遭受此次台风的强袭击;宁海:会,受袭击时间为5时;象山:会,受袭击时间时.(约1时13分)例15(2022锦州)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?解法一:过点B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=5.过点C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°设CK=x,则BK=x.在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴x+5=5+x.解得x=5.∵5海里>海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场危险.解法二:过点C作CE⊥BD,垂足为E,∴CE∥GB∥FA.∴∠BCE=∠GBC=60°.∠ACE=∠FAC=45°.∴∠BCA=∠BCE-∠ACE=60°-45°=15°.又∠BAC=∠FAC-∠FAB=45°-30°=15°,∴∠BCA=∠BAC.∴BC=AB=10在Rt△BCE中,CE=BC·cos∠BCE=BC·cos60°=10×=5(海里).∵5海里>海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场的危险.六、三角模型例16(2022四川)如图,小丽的家住在成都市锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测得大厦的高度,小丽在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦顶部B的仰角为30°。已知小丽所住的电梯公寓高82米,请你帮助小丽计算出大厦高度BC及大厦与小丽所住电梯公寓间的距离AC.解:过点D作DE⊥BC于E,则四边形ACED是矩形. ∴AC=DE,DA=EC=82米,∠BDE=30°. 在Rt△BDE中,∵tan∠BDE=∴BE=DE·tan∠BDE=DE. 在Rt△BAC中,∵tan∠BAC= 答:大夏BC高为123米,小丽所住的电梯公寓与大厦间的距离AC为41米七、统计模型例17(2022哈尔滨)中小学生的视力状况受到全社会的广泛关注,某市有关部门对全市4万名初中生的视力状况进行一次抽样调查统计,所得到的有关数据绘制成频率分布直方图,如下图,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频数是30.(1)本次调查共抽测了多少名学生?(2)本次调查抽测的数据的中位数应在哪个小组?说明理由.(3)如果视力在—(含、)均属正常,那么全市初中生视力正常的约有多少人?解:(1)因为频率之比等于频数之比,设第一小组的频数为2k,所以各组的频数依次为2k、4k、9k、7k、3k,于是3k=30,所以k=10所以2k=20,4k=40,9k=90,7k=70,所以20+40+90+70+30=250(人).答:本次调查共抽测了250名学生.(2)中位数应在第三小组.∵250个数据的中位数是第125和第126两个数据的平均数,前两个小组的频数之和是20+40=60,60<125视力第三小组的频数是90,90+60=150,150>126,视力∴中位数应在第三小组.(3)∵视力在—范围内的人有70人,∴频率==,∴全市初中生视力正常的约有40000×=11200(人),答:全市初中生视力正常的约有11200人.例18、(2022河北)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)初一年级80868880889980749189初二年级85858797857688778788初三年级82807878819697888986(1)请你填写下表:平均分众数中位数初一年级87初二年级85初三年级84(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机器搬迁合同范本
- 机械转租协议合同
- 婚庆承揽合同范本
- 松木转让合同范本
- 林地拆迁合同范本
- 2025年学校关于党的教育方针贯彻落实情况自查报告模板
- 2022年房地产市场数据分析报告
- 冷藏车维修服务合同
- 网络维护服务合同协议
- 水利工程施工合同条款详解
- (2025秋新版)苏教版科学三年级上册全册教案
- 农商行法律培训课件
- 部编版小学二年级语文上册教学反思集体备课计划
- 执法用手机管理办法
- 双重管理安全员管理办法
- 2019-2025年中国鲜切水果行业市场调查研究及投资前景预测报告
- 染色体核型分析报告解读要点
- 2025年中国泵行业市场白皮书
- (高清版)DB1303∕T 357-2023 鲜食核桃果实主要病虫害防治技术规程
- 无人机集群技术-智能组网与协同 课件全套 第1-8章 绪论- 无人机集群任务分配
- 天然牙-种植体联合支持下颌覆盖义齿的三维有限元分析
评论
0/150
提交评论