高一数学必修4教案_第1页
高一数学必修4教案_第2页
高一数学必修4教案_第3页
高一数学必修4教案_第4页
高一数学必修4教案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学必修4教案好的高一数学必修4教案能带领学习更好地学习。数学的公理化方法实质上就是规律学方法在数学中的直接应用。在公理系统中,全部命题与命题之间都是由严谨的规律性联系起来的。下面是作者为大家细心整编的高一数学必修4教案(优秀6篇),盼望能够对小伙伴们的写作有一点关心。

高一数学必修四教案篇一

《三角函数模型的简洁应用》教案

教学预备

教学目标

把握三角函数模型应用基本步骤:

(1)依据图象建立解析式;

(2)依据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简洁函数模型。

教学重难点

。利用收集到的数据作出散点图,并依据散点图进行函数拟合,从而得到函数模型。

教学过程

一、练习讲解:《习案》作业十三的第3、4题

3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摇摆时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

(1)求小球摇摆的周期和频率;(2)已知g=24500px/s2,要使小球摇摆的周期恰好是1秒,线的长度l应当是多少?

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值

(精确到0.001)。

(2)一条货船的吃水深度(船底与水面的距离)为4米,平安条例规定至少要有1.5米的平安间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?

(3)若某船的吃水深度为4米,平安间隙为1.5米,该船在2:00开头卸货,吃水深度以每小时0.3

米的速度削减,那么该船在什么时间必需停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要留意利用周期性以及问题的条件,另一方面还要留意考虑实际意义。关于课本第64页的“思索”问题,实际上,在货船的平安水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,由于这样不能保证船有足够的时间发动螺旋桨。

练习:教材P65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)依据图象建立解析式;

(2)依据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简洁函数模型。

2、利用收集到的数据作出散点图,并依据散点图进行函数拟合,从而得到函数模型。

四、作业《习案》作业十四及十五。

高一数学必修4教案篇二

《任意角和弧度制》教案

教学预备

教学目标

1、学问与技能

(1)推广角的概念、引入大于角和负角;(2)理解并把握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)把握全部与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示学问背景,引发同学学习爱好。(7)创设问题情景,激发同学分析、探求的学习态度,强化同学的参加意识。

2、过程与方法

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探究具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情态与价值

通过本节的学习,使同学们对角的概念有了一个新的熟悉,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系。理解把握终边相同角的表示方法,学会运用运动变化的观点熟悉事物。

教学重难点

重点:理解正角、负角和零角的定义,把握终边相同角的表示法。

难点:终边相同的角的表示。

教学工具

投影仪等。

教学过程

【创设情境】

思索:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发觉,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要讨论的主要内容——任意角。

【探究新知】

1.学校时,我们已学习了角的概念,它是如何定义的呢?

[展现投影]角可以看成平面内一条射线围着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,围着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开头时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点。

2.如上述情境中所说的校准时钟问题以及在体操竞赛中我们常常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角。同学们思索一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明白什么问题?又该如何区分和表示这些角呢?

[展现课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明白我们讨论推广角概念的必要性。为了区分起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).假如一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

8.学习小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你娴熟把握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合。

五、评价设计

1.作业:习题1.1A组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,娴熟把握他们的表示,

进一步理解具有相同终边的角的特点。

课后小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你娴熟把握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合。

课后习题

作业:

1、习题1.1A组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,娴熟把握他们的表示,

进一步理解具有相同终边的角的特点。

板书

高一数学必修四教案篇三

《平面对量的实际背景及基本概念》教案

教学预备

教学目标

o了解向量的实际背景,理解平面对量的概念和向量的几何表示;把握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。

o通过对向量的学习,使同学初步熟悉现实生活中的向量和数量的本质区分。

o通过同学对向量与数量的识别力量的训练,培育同学熟悉客观事物的数学本质的力量。

教学重难点

教学重点:理解并把握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。

教学难点:平行向量、相等向量和共线向量的区分和联系。

教学过程

(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次消失)

1、数量与向量有何区分?(数量没有方向而向量有方向)

2、如何表示向量?

3、有向线段和线段有何区分和联系?分别可以表示向量的什么?

4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?

5、满意什么条件的两个向量是相等向量?单位向量是相等向量吗?

6、有一组向量,它们的方向相同或相反,这组向量有什么关系?

7、假如把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?

这时各向量的终点之间有什么关系?

课后小结

1、描述向量的两个指标:模和方向。

2、平面对量的概念和向量的几何表示;

3、向量的模、零向量、单位向量、平行向量等概念。

高一数学必修四教案篇四

教学类型:探究讨论型

设计思路:通过一系列的猜想得出德。摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简洁的应用,因此我们制作了本微课。

教学过程:

一、片头

(20秒以内)

内容:你好,现在让我们一起来学习《集合的运算——自己探究也能发觉的数学规律(其次讲)》。

第1张PPT

12秒以内

二、正文讲解

(4分20秒左右)

1、引入:牛顿曾说过:“没有大胆的猜想,就做不出宏大的发觉。”

上节课老师和大家学习了集合的运算,得出了一个好玩的规律。课后,你举例验证了这个规律吗?

那么,这个规律是偶然的,还是一个恒等式呢?

第2张PPT

28秒以内

2、规律的验证:

试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用

第3张PPT

2分10秒以内

3、抽象概括:通过我们的观看和验证,我们发觉这个规律是一个恒等式。

而这个规律就是180年前闻名的英国数学家德摩根发觉的。

为了纪念他,我们将它称为德摩根律。

原来我们通过自己的探究也能发觉这么宏大的数学规律。

第4张PPT

30秒以内

4、例题应用:使用例题形式,将的德摩根定律的结论加以应用,让同学更加熟识集合的运算

第5张PPT

1分20秒以内

三、结尾

(20秒以内)

通过这在道题的解答,我们发觉德摩根律为解答集合运算问题供应了更为简便的方法。

盼望你在今后的学习中,勇于探究,发觉更多好玩的规律。

第6张PPT

10秒以内

教学反思(自我评价)

同学在学习集合时会接触到许多的集合运算,往往同学觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展现,让同学在直观的环境下轻松的学习,提高同学学习数学的爱好,并通过层层深化的讲解,让同学进一步加强对集合运算的理解和应用力量,效果特别好。

高一数学必修4教案篇五

《任意角的三角函数》教案

教学预备

教学目标

1、学问与技能

(1)把握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)把握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数。

2、过程与方法

学校学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。引导同学把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。依据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号。最终主要是借助有向线段进一步熟悉三角函数。讲解例题,总结方法,巩固练习。

3、情态与价值

任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点。过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导同学从自己已有认知基础动身学习三角函数,但它对精确     把握三角函数的本质有肯定的不利影响,“从角的集合到比值的集合”的对应关系与同学熟识的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响同学对三角函数概念的理解

本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数。这个定义清晰地表明白正弦、余弦函数中从自变量到函数值之间的对应关系,也表明白这两个函数之间的关系。

教学重难点

重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解。

教学工具

投影仪

教学过程

【复习回顾】

1、三角函数的定义;

2、三角函数在各象限角的符号;

3、三角函数在轴上角的值;

4、诱导公式(一):终边相同的角的同一三角函数的值相等;

5、三角函数的定义域。

要求:记忆。并指出,三角函数没有定义的地方肯定是在轴上角,所以,凡是遇到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆。

【探究新知】

1.引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?

2.边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(留意:这个单位长度不肯定就是1厘米或1米).

9学习小结

(1)了解有向线段的概念。

(2)了解如何利用与单位圆有关的有向线段,将任意角

的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来。

(3)体会三角函数线的简洁应用。

1.作业:

比较下列各三角函数值的大小(不能使用计算器)

(1)

2.练习三角函数线的作图。

课后小结

小结

(1)了解有向线段的概念。

(2)了解如何利用与单位圆有关的有向线段,将任意角

的正弦、余弦、正切函数值分别用正弦线、余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论