版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——量子化学课程习题及标准答案
?(x,y,z)]?x?(x,y,z)?V?(x,y,z)x?,V?V??0[x
e)
1????????,[x,H]?[x,T?V]?[x,T]?[x2m
f)
??y?z?]?2?y?z?,p?[x?x2x2Chapter04
1:Theone-dimensionalharmonic-oscillatorisatitsfirstexcitedstateanditswavefunctionisgivenas
?1(x)?2(?)3/412xexp(??x)1/42(?)
pleaseevaluatetheexpectationvalues
(averagevalues)ofkineticenergy(T),potentialenergy(V)andthetotalenergy.
Answer:1)Firstofall,checkthenormalizationpropertyofthewavefunction.
2)Evaluatetheexpectationvalueofkineticenergy.
3)Evaluatetheexpectationvalueofpotentialenergy
4)TotalEnergy=T+V
2.Theone-dimensionalharmonic-oscillatorHamiltonianis
?p222??H??2?vmx2mTheraisingandloweringoperatorsforthis
problemaredefinedas
2x??A?1??[p?2?ivmx]x1/2,(2m)??A?Showthat
1??[p?2?ivmx]x1/2(2m),
?A??H??1hvA??2??A??H??1hvA??2?,A?]??hv,[A???]??hvA??,A,[H?andA?areindeedladderShowthatAoperatorsandthattheeigenvaluesarespacedatintervalsofhv.Sinceboththekineticenergyandthepotentialenergyarenonnegative,weexpecttheenergyeigenvaluestobenonnegative.Hencetheremustbeastateofminimumenergy.Operateonthewave
?andthenfunctionforthisstatefirstwithA?andshowthatthelowestenergywithA?]?hvA??,A[H???????eigenvalueis
1hv2.Finally,concludethat,n=0,1,2,…
1E?(n?)hv2Answer:
1)Writedownthedefinitionofoperator
d?x??i?pdx
2)Expandtheoperatorsinfullform.
?d222?H???2?vmx22mdx1dA??[?i??2?vmxi]dx2m1dA??[?i??2?vmxi]dx2m3)Evaluatethecorrespondingcombinationof
operators
22
1d1dA?A??[?i??2?vmxi][?i??2?vmxi]dxdx2m2m1ddd?[?i?[?i??2?vmxi]?2?vmxi[?i??2?vmxi]]2mdxdxdx21ddd22222?[???2?vm??2?vm?x?2?vmx??4?vmx]22mdxdxdx21d22222?[???2?vm??4?vmx]22mdx?2d211222????2?vmx?hv?H?hv22mdx221d1dA?A??[?i??2?vmxi][?i??2?vmxi]dxdx2m2m1ddd?[?i?[?i??2?vmxi]?2?vmxi[?i??2?vmxi]]2mdxdxdx21dd2d2222?[???2?vm??2?vm?x?2?vmx??4?vmx]22mdxdxdx22?d11222????2?vmx?hv?H?hv22mdx2222?d1d222?HA??[??2?vmx][?i??2?vmxi]22mdxdx2m221?ddd222?[?[?i??2?vmxi]?2?vmx[?i??2?vmxi]]2dxdx2m2mdx3321i?ddd2d222233?[?2?v?i??v?ix?2?vmxi??4?v32dxdxdx2m2mdx221d?d222??A?H[?i??2?vmxi][??2?vmx]2dx2mdx2m21i?3d3dd2222223?[?4?vmxi??2?vmxi???v?ix?4?v32dxdx2m2mdx11d2d22[?2?v?i?4?vmxi?]?hv[?i?]?dx2m2mdx11d1hv[2?vmxi]?hv[?i??2?vmxi]?hvA?2m2mdx2m?A?AH??H??
Inthesamemanner,wecanget
?A?AH??hvAH???4)SubstitutingtheabovecommunicatorsintotheSchroeidngerequation,weget
???E?H?A??[AH??hvA]??AE??hvA??(E?hv)A?H???????A??[AH??hvA]??AE??hvA??(E?hv)A?H??????
?andA?areindeedladderThisshowsthatAoperatorsandthattheeigenvaluesarespacedatintervalsofhv.
5)Supposethat?istheeigenfunctionwiththelowesteigenvalue.
?????E?Hlowest
AccordingtothedefinitionofA_operator,we
have
As?istheeigenfunctionwiththelowesteigenvalue,theaboveequationisfulfilledifandonlyif
?A??(E?hv)A?H??A???0
Operatingonthewavefunctionforthisstate?andthenwithA?leadstofirstwithA??11??hv]??H???hv?A?A???0?[H22
Therefore,thelowestenergyis1/2hv.
1?H??(n?hv)?,2n?0,1,2,3?
Chapter05
1.Forthegroundstateoftheone-dimensionalharmonicoscillator,computethestandarddeviations?xand?pxandcheckthattheuncertaintyprincipleisobeyed.Answer:
1)Thegroundstatewavefunctionoftheone-dimensionalharmonicoscillatorisgivenby
??(?)?e?14141??x22
2)Thestandarddeviations?xand?pxaredefinedas
?x?x22?x
2(?p)2?(?p)2??p2
Theproductof?xand?pisgivenby
?x?p?1????2?22???42
2Itshowsthattheuncertaintyprincipleis
obeyed.
2.(a)Showthatthethreecommutationrelations[L?,L?]=i?L?,[L?,L?]=i?L?,[L?,L?]=i?L?
??L??i?L?(b)areequivalenttothesinglerelationL?]?,LFind[LAnswer:1):
xyzyzxzxy2xy?????Li?Lj?LkLxyz????????L??(Li?Lj?Lk)?(Li?Lj?Lk)Lxyzxyz???????LxLyk?LxLzj?LyLxk?LyLzi?LzLxj?LzLyi????(LyLz?LzLy)i?(LzLx?LxLz)j?(LxLy?LyLx)k???????[Ly,Lz]i?[Lz,Lx]j?[Lx,Ly]k?i?(Lxi?Lyj?Lzk)[Lz,Lx]?i?Ly[Lx,Ly]?i?Lz?[Ly,Lz]?i?Lx
2):
[L2x,Ly]?Lx[Lx,Ly]?[Lx,Ly]Lx?Lx(i?Lz)?(i?Lz)Lx?i?(LxLz?LzLx)
3.CalculatethepossibleanglesbetweenLandthezaxisforl=2.
Answer:
ThepossibleanglesbetweenLandthezaxisareequivalenttheanglesbetweenLandLz.Hence,theanglesaregivenby:
L?2(2?1)??6?mzCos??L???
???35.26,65.91,90.00,114.10,144.7
4.
Complete
this
equation:
3m33m?LzYl?m?Yl
Chapter06
1.Explainwhyeachofthefollowingintegralsmustbezero,wherethefunctionsarehydrogenlikewavefunctions:(a);(b)Answer:
Both3p-1and3p0areeigenfunctionsofLz,witheigenvaluesof-1and0,respectively.Therefore,theaboveintegralscanbesimplifiedas
a)duetoorthogonalizationpropertiesofeigenfunctions?3p??12p|3p?02pLzz1z?11?1b)0
2.Useparitytofindwhichofthefollowingintegralsmustbezero:(a);(b)
2
;(c).Thefunctionsintheseintegralsarehydrogenlikewavefunctions.Answer:
1)b)andc)mustbezero.
3.Forahydrogenatominapstate,thepossibleoutcomesofameasurementofLzare–?,0,and?.Foreachofthefollowingwavefunctions,givetheprobabilitiesofeachofthesethreeresults:(a)?;(b)?;(c)?.Thenfindforeachofthesethreewavefunctions.
Answer:
a)?2p??2p,therefore,theprobabilitiesare:0%,100%,0%
2pz2py2p1z0?2px1?(?2p1??2p?1)2,theprobabilitiesare
50%,0%,50%.
?2p,theprobabilitiesare100%,0%,0%b)0,0,1
1/2
4.Ameasurementyields2?forthemagnitudeofaparticle’sorbitalangularmomentum.IfLxisnowmeasured,whatarethepossibleoutcomes?
1
Answer:
1):Sincethewavefunctionisthe
2
eigenfunctionofL,ameasurementofthemagnitudeoftheorbitalangularmomentumshouldbe
L(L?1)??2??L,
ThepossibleoutcomeswhenmeasureLxare-1,0,1
?1Chapter07
1.Whichofthefollowingoperatorsare
2222
Hermitian:d/dx,i(d/dx),4d/dx,i(d/dx)?Answer:
Anoperatorinone-DspaceisHermitianif
*???A?dx??(A?)dx??
*a)
d?*??dxdx???d*????(?)dxdx*???d?d????dx????dxdxdx**
b)
d?*??idxdx?i??d*???(i?)dxdx*?d?d??i??dx??i????dxd*c)
d?*d??4dx?4??dx2dx**2???d?d??4?dxdx*?*d?d?d???4?dx??4?dxdxdxd???4?dx2dx2*??d??4?d2
Thisoperatorcanbewrittenasaproductof1Dkineticoperatorandaconstant.Hence,it’sHermitian.
d)AsthethirdoperatorisHermitian,thisoperatorisnotHermitian.
?andB?areHermitianoperators,prove2.IfA?B?isHermitianifandonlythattheirproductA?andB?andB?commute.(b)IfA?areifA?B?)isHermitian.?+B?AHermitian,provethat1/2(A?Hermitian?(d)Is1/2(x?p?+p?x?)(c)Isx?pxxxHermitian?Answer:1)
IfoperatorAandBcommute,wehave
?B??A?B??0???B?A??B?AA*??????[(AB?BA)?]d??0
??B?)?]*d??0??B?A???[(A**???????[AB?]d????[BA?]d?
OperatorAandBareHermitian,wehave
??]*d??(A??)*(B?B?A??)d???*A??d????[B??Therefore,whenAandBcommute,the
followingequationfulfills.Namely,ABisalsoHermitian.
**??????[AB?]d????AB?d?
2)
1????1*??*???[(AB?BA)]?d??[?AB?d???BA?d?]?2??2*OperatorAandBareHermitian,weget
11*??*????)*d??A[??AB?d????BA?d?]?[??(B221????*?????(AB?)d????[(BA?AB)?]*d?21????*1??*?????(AB?BA)?d????[(AB?BA)?]d?22
Theaboveequationshowsthattheoperator1/2[AB+BA]isHermitian.
c)xpxisnotHermitiansincebothxandpxareHermitiananddonotcommute.d)Yes
Chapter08
1.Applythevariationfunction??e?crtothehydrogenatom;choosetheparameterctominimizethevariationalintegral,andcalculatethepercenterrorintheground-stateenergy.Solution:
1)Therequirementofthevariationfunctionbeingawell-behavedfunctionrequiresthatcmustbeapositivenumber.
2)checkthenormalizationofthevariationfunction.
???d???e??d??H?**?2cr2rdr?Sin(?)d??d???c
333)Thevariationintegralequalsto
121c12*w???(???)?d???(????*?2r?2??d??*c31?2??cr23?cr3?(?)?d???2c?e[(2?)e]rdr?4c??r?rr?r1?c(c?2)2*c32
4)Theminimumofthevariationintegralis
?w1?c?1?0?c?1?w???c2
5)Thepercenterrorinthegroundstateis0%
2.Ifthenormalizedvariationfunction??(3/l)xfor0≤x≤lisappliedtotheparticle-in-a-one-dimensional-boxproblem,onefindsthatthevariationintegralequalszero,whichislessthanthetrueground-stateenergy.Whatiswrong?Solution:
Thecorrecttrailvariationfunctionmustbesubjecttothesameboundaryconditionofthegivenproblem.Fortheparticleina1Dboxproblem,thecorrectwavefunctionmustequaltozeroatx=0andx=l.However,thetrialvariationfunction??(3/l)xdoesnotfulfilltheserequirement.Thevariationintegralbased
31/231/2onthisincorrectvariationfunctiondoesnotmakeanysense.
3.Applicationofthevariationfunction(wherecisavariationparameter)to
aproblemwithV=af(x),whereaisapositiveconstantandf(x)isacertainfunctionofx,givesthevariationintegralasW=c?2/2m
3
+15a/64c.FindtheminimumvalueofWforthisvariationfunction.Solution:
??e?cx2c?a5d(?15)()3a3?w2m64c2??0?c??1?cdc42m??wmin5()am?1332??0.72598a4m4?231414343221414
4.In1971apaperwaspublishedthatappliedthenormalizedvariationfunction
Nexp(-br2a02-cr/a0)tothehydrogenatomandstatedthatminimizationofthevariationintegralwithrespecttotheparametersbandcyieldedanenergy0.7%abovethetrueground-stateenergyforinfinitenuclearmass.Withoutdoinganycalculations,statewhythisresultmustbewrong.Solution:
Fromtheevaluationofexercise1,weknowthatthevariationfunctionexp(-cr)givesnoerrorinthegroundstateofhydrogenatom.ThisfunctionisaspecialcaseofthenormalizedvariationfunctionNexp(-br2a02-cr/a0)whenbequalstozero.Therefore,adoptingthenormalizedvariationfunctionasatrialvariationfunctionshouldalsohavenoerrorinthegroundstateenergyforhydrogenatom.
5.Provethat,forasystemwitha
??d??E,if?isnondegenerategroundstate,??Hanynormalized,well-behavedfunctionthatisnotequaltothetrueground-statewave
*0function.(E0isthelowest-energyeigenvalue
?)ofHSolution:
AstheeigenfunctionsoftheHermitianoperatorHformacompleteset,anywell-behavedfunctionwhichissubjecttothesameboundaryconditioncanbeexpandedasalinearcombinationoftheeigenfunctionoftheHermitianoperator,namely,
???ci?i,where?sareeigenfunctionsofi
i?0?HermitianoperatorH,cisareconstant.
Theexpectationvalueof???withrespecttotheHermitianoperatoris
*????*?*?*???H?d???(?ci?i)H?cj?jd???ci?cj??iH?i?0j?0i?0j?02??ci?02?*i?cE???ccE??cjjij*iiij?0i?0i?0?2?2i?1i?0???2iEi?c0E0??cii?1??c0E0??ciE0?E0?ci?E0
Chapter09,10
1.FortheanharmonicoscillatorwithHamiltonian
?2d1234?H???kx?cx?dx2mdx22,evaluateE(1)
forthefirstexcitedstate,takingtheunperturbedsystemastheharmonicoscillator.Solution:
Thewavefunctionofthefirstexcitedstateoftheharmonicoscillatoris
?1?(4?314?)xe??x22
Hence,thefirstordercorrecttoenergyofthefirstexcitedstateisgivenby
4?'???H?1dx??()xe*1314??x22?(c?x?d?x)(4?3344?3?)x14?(4?3?)12?xe2??x2d?xdx?d(4?)12?xe6??x215ddx?4?
2.Considertheone-particle,one-dimensionalsystemwithpotential-energyV=V0for
13l?x?l44,V=0for
0?x?1l4and
3l?x?l4
22andV=∞elsewhere,whereV0=?/ml.Treatthesystemasaperturb
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026重庆发展资产经营有限公司内部审计岗专项招聘1人备考题库附答案详解(夺分金卷)
- “梦想靠岸”招商银行乌鲁木齐分行2026春季校园招聘备考题库含答案详解(预热题)
- 2026年中老年美妆护肤项目可行性研究报告
- 2026湖北武汉人才招聘派往国有银行工作2人备考题库及答案详解(考点梳理)
- 2026年可编程机器人小车项目公司成立分析报告
- 第一季度广东广州市客都文创产业孵化(梅州)有限公司招聘备考题库带答案详解(b卷)
- 2026年合规性主动监控项目公司成立分析报告
- 2026江西南昌青山湖区南师附小高新幼儿园招聘教师备考题库及1套完整答案详解
- 2026河南郑州商学院招聘技术人员备考题库及答案详解(真题汇编)
- 2026海南琼中黎族苗族自治县招聘事业单位工作人员60人备考题库含答案详解(研优卷)
- GB/T 12229-2025通用阀门碳素钢铸件技术规范
- 2025年青海公务员《行政职业能力测验》试题及答案
- (零模)2026届广州市高三年级调研测试数学试卷(含答案解析)
- 孕期阴道炎课件
- 老年性舞蹈病的护理查房
- 2026年辽宁医药职业学院单招职业技能测试题库带答案解析
- GB/T 13471-2025节能项目经济效益计算与评价方法
- DB5105∕T 53-2022 地理标志产品 分水油纸伞加工技术规程
- 消防中队安全隐患自查自纠
- 工程测量49-测量误差理论(4)等精度观测的误差估计课件
- 2025年安全员B证理论试题及答案(1000题)
评论
0/150
提交评论