版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.32.2018年1月份,菏泽市市区一周空气质量报告中某项污染指数的数据是41,45,41,44,40,42,41,这组数据的中位数、众数分别是()A.42,41 B.41,42 C.41,41 D.42,453.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1084.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60° B.50° C.40° D.30°5.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.256.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4) B.(3,3) C.(3,1) D.(4,1)7.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105 B.5.5×104 C.0.55×105 D.5.5×1058.在下列四个标志中,既是中心对称又是轴对称图形的是()A. B. C. D.9.是两个连续整数,若,则分别是().A.2,3 B.3,2 C.3,4 D.6,810.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为_____.12.同时掷两粒骰子,都是六点向上的概率是_____.13.如图,直线l1∥l2,则∠1+∠2=____.14.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为_________.15.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.16.分解因式:x3-9x17.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.三、解答题(共7小题,满分69分)18.(10分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.19.(5分)先化简,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.20.(8分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?21.(10分)已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是;∠AHB=.(2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.(3)拓展延伸在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离.22.(10分)如图,在中,,的垂直平分线交于,交于,射线上,并且.()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论.23.(12分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求发射台与雷达站之间的距离;(Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?24.(14分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故选C.【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.2、C【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】从小到大排列此数据为:40,1,1,1,42,44,45,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.【点睛】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).4、D【解析】
由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故选D.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.5、D【解析】分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.6、A【解析】
利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度55000用科学记数法表示为5.5×1.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、C【解析】
根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、A【解析】
根据,可得答案.【详解】根据题意,可知,可得a=2,b=1.故选A.【点睛】本题考查了估算无理数的大小,明确是解题关键.10、D【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.二、填空题(共7小题,每小题3分,满分21分)11、(6054,2)【解析】分析:分析题意和图形可知,点B1、B3、B5、……在x轴上,点B2、B4、B6、……在第一象限内,由已知易得AB=,结合旋转的性质可得OA+AB1+B1C2=6,从而可得点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),即点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到的,由此即可推导得到点B2018的坐标.详解:∵在△AOB中,∠AOB=90°,OA=,OB=2,∴AB=,∴由旋转的性质可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,∴点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),由此可得点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到,∴点B2018相当于是由点B向右平移了:个单位得到的,∴点B2018的坐标为(6054,2).故答案为:(6054,2).点睛:读懂题意,结合旋转的性质求出点B2和点B4的坐标,分析找到其中点B的坐标的变化规律,是正确解答本题的关键.12、.【解析】
同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.【详解】解:都是六点向上的概率是.【点睛】本题考查了概率公式的应用.13、30°【解析】
分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.【详解】如图,分别过A、B作l1的平行线AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案为30°.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.14、【解析】DE∥BC即15、1【解析】
要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.16、x【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x217、4【解析】
由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,
∵四边形ABCD是矩形
∴AO=CO=5=BO=DO,
∴S△DCO=S矩形ABCD=10,
∵S△DCO=S△DPO+S△PCO,
∴10=×DO×PF+×OC×PE
∴20=5PF+5PE
∴PE+PF=4
故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.三、解答题(共7小题,满分69分)18、(1)83,81;(2),推荐甲去参加比赛.【解析】
(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.【详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分,故答案为:83分、81分;(2),∴.∵,,∴推荐甲去参加比赛.【点睛】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19、,当x=0时,原式=(或:当x=-1时,原式=).【解析】
先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【详解】解:原式=×=.x满足﹣1≤x≤1且为整数,若使分式有意义,x只能取0,﹣1.当x=0时,原式=﹣(或:当x=﹣1时,原式=).【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】
设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.21、(1),45°;(2)不成立,理由见解析;(3).【解析】
(1)由正方形的性质,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性质得到,∠CAB==45°,又因为∠CBA=90°,所以∠AHB=45°.(2)由矩形的性质,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性质可得∠CAE=∠CBF,,则∠CAB=60°,又因为∠CBA=90°,求得∠AHB=30°,故不成立.(3)分两种情况讨论:①作BM⊥AE于M,因为A、E、F三点共线,及∠AFB=30°,∠AFC=90°,进而求得AC和EF,根据勾股定理求得AF,则AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如图3所示:作BM⊥AE于M,由A、E、F三点共线,得:AE=6+2,BF=3+3,则BM=.【详解】解:(1)如图1所示:∵四边形ABCD和EFCG均为正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案为,45°;(2)不成立;理由如下:∵四边形ABCD和EFCG均为矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分两种情况:①如图2所示:作BM⊥AE于M,当A、E、F三点共线时,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如图3所示:作BM⊥AE于M,当A、E、F三点共线时,同(2)得:AE=6+2,BF=3+3,则BM=BF=;综上所述,当A、E、F三点共线时,点B到直线AE的距离为.【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.22、(1)见解析;(2)见解析【解析】
(1)求出EF∥AC,根据EF=AC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根据菱形的判定推出即可.【详解】(1)证明:∵∠ACB=90°,DE是BC的垂直平分线,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形,证明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学第四学年(皮革化学与工程)材料研发阶段测试题及答案
- 2025年中职(美容技术)美容护肤阶段测试题及答案
- 2025年高职口腔医学(口腔正畸学基础)试题及答案
- 2025年中职(连锁经营管理)连锁经营综合测试试题及答案
- 2026年安检服务(应急处置)试题及答案
- 2025年大学大三(物联网实训)智能家居系统搭建实操综合测试试题及答案
- 2025年中职包装设计与制作(包装印刷)试题及答案
- 2025年中职化工装备技术(化工装备应用)试题及答案
- 2026年书面沟通综合测试(书面表达能力)试题及答案
- 2025年大学智能家居(应用技术)试题及答案
- 广东省深圳市龙华区2024-2025学年七年级上学期期末历史试题(含答案)
- 74粉色花卉背景的“呵护女性心理健康遇见更美的自己”妇女节女性健康讲座模板
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库新版
- 煤矿兼职教师培训课件
- 西医内科学复习重点笔记
- 8、中医科诊疗技术操作规范
- 夹套管施工方案
- 地面人工开挖施工方案
- 物业房屋中介合作协议
- 新郎父亲在婚礼上的精彩讲话稿范文(10篇)
- (山东)通风与空调工程施工资料表格大全(鲁TK001-057)
评论
0/150
提交评论