圆中的动点和最值问题_第1页
圆中的动点和最值问题_第2页
圆中的动点和最值问题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

。圆中的动点及最值问题在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。最值问题的解决方法通常有两种:应用几何性质:三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。运用代数证法:运用配方法求二次三项式的最值;(通常和经济问题,效率问题相结合)② 运用一元二次方程根的判别式。这里只介绍圆中的动点和最值相结合的问题,还会有和相似相结合的。下面两道题其实是同种类型的题。一般考试涉及到都会是这两种。1.(2010?河北区模拟)如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,则AP+BP的最小值为_________.解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3,∴A′B=3∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=3此类问题其实是用将军饮马的思想去解决, 先作对称点,然后连结求最值。 是将军饮马和圆中动点问题相结合。如图,P为半圆直径AB上一动点,C为半圆中点,D为弧AC的三等分点,若AB=2,则PC+PD的最短距离为____________精选资料,欢迎下载。解:设点C关于AB的对称点为E,连接DE交AB于P,则此时PC+PD的值最小,且PC+PD=PE+PD=DE.连接OC、OE;C为半圆中点,D为弧AC的三等分点,∴弧CD的度数为30°,∠CDE=90°;AB=2,CE=2;DE=EC?cos∠CED=即PC+PD的最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论