版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年福建省宁德市福鼎第一中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(3分)已知直线a?α,给出以下三个命题:①若平面α∥平面β,则直线a∥平面β;②若直线a∥平面β,则平面α∥平面β;③若直线a不平行于平面β,则平面α不平行于平面β.其中正确的命题是() A. ② B. ③ C. ①② D. ①③参考答案:D考点: 平面与平面平行的性质;平面与平面平行的判定.专题: 分析法.分析: 对于①若平面α∥平面β,则直线a∥平面β;由面面平行显然推出线面平行,故正确.对于②若直线a∥平面β,则平面α∥平面β;因为一个线面平行推不出面面平行.故错误.对于③若直线a不平行于平面β,则平面α不平行于平面β,因为线面不平面必面面不平行.故正确.即可得到答案.解答: 解①若平面α∥平面β,则直线a∥平面β;因为直线a?α,平面α∥平面β,则α内的每一条直线都平行平面β.显然正确.②若直线a∥平面β,则平面α∥平面β;因为当平面α与平面β相加时候,仍然可以存在直线a?α使直线a∥平面β.故错误.③若直线a不平行于平面β,则平面α不平行于平面β,平面内有一条直线不平行与令一个平面,两平面就不会平行.故显然正确.故选D.点评: 此题主要考查平面与平面平行的性质及判定的问题,属于概念性质理解的问题,题目较简单,几乎无计算量,属于基础题目.2.已知、表示直线,、、表示平面,则下列命题中不正确的是(
)A.若则
B.若则C.若则
D.若则参考答案:D3.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线. A. 4 B. 3 C. 1 D. 0参考答案:C考点: 命题的真假判断与应用.专题: 平面向量及应用;简易逻辑.分析: ①利用向量相等与菱形的性质即可判断出正误;②利用菱形的性质、模相等的定义即可判断出正误;③利用菱形的性质、直角三角形的边角关系即可判断出正误.④利用向量共线定理即可判断出与共线,即可判断出正误.解答: 解:①图中所标出的向量中与相等的向量只有1个,(不含本身),正确;②图中所标出的向量与的模相等的向量有4个,,,(不含本身),正确;③利用菱形的性质、直角三角形的边角关系可得:的长度恰为长度的倍,正确.④与共线,因此不正确.因此说法中错误说法的个数是1.故选:C.点评: 本题考查了向量相等、菱形的性质、模相等的定义、直角三角形的边角关系、向量共线定理、简易逻辑的判定,考查了推理能力,属于基础题.4.化简得到
(
)A.
B.
C.
D.
参考答案:D略5.给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立参考答案:D【考点】函数的值;函数解析式的求解及常用方法.【分析】利用[x]为不大于x的最大整数,结合函数性质求解.【解答】解:在A中,∵[x]为不大于x的最大整数,∴x﹣[x]≥0,故A正确;在B中,∵[x]为不大于x的最大整数,∴x﹣[x]<1,故B正确;在C中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴对任意实数x,f(x+1)=f(x)恒成立,故C正确;在D中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴f(﹣3.2)=﹣3.2﹣[﹣3.2]=﹣3.2+4=0.8,f(3.2)=3.2﹣[3.2]=3.2﹣3=0.2,∴对任意实数x,f(x+1)=f(x)不成立,故D错误.故选:D.6.下列函数中既是偶函数又在上是增函数的是
(
)A.
B.
C.
D.参考答案:B7.过球面上三点A、B、C的截面和球心的距离是球半径的一半,且AB=6,BC=8,AC=10,则球的表面积是
(
)A.B.C.D.参考答案:D8.(5分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0,当m>0时,f(x﹣m)>f(x),则不等式f(﹣2+x)+f(x2)<0的解集为() A. (2,1) B. (﹣∞,﹣2)∪(1,+∞) C. (﹣1,2) D. (﹣∞,﹣1)∪(2,+∞)参考答案:B考点: 抽象函数及其应用.专题: 函数的性质及应用.分析: 先由条件f(x)+f(﹣x)=0,得f(﹣x)=﹣f(x),故f(x)是奇函数,再由条件f(x﹣m)>f(x)得知f(x)是减函数,将不等式转化为不等式f(﹣2+x)+f(x2)<0等价为f(﹣2+x)<﹣f(x2)=f(﹣x2),然后利用函数是减函数,进行求解.解答: 因为函数f(x)满足f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数,当m>0时,f(x﹣m)>f(x),∴f(x)是减函数,所以不等式f(﹣2+x)+f(x2)<0等价为f(﹣2+x)<﹣f(x2)=f(﹣x2),所以﹣2+x>﹣x2,即x2﹣2+x>0,解得x<﹣2或x>1,即不等式的解集为(﹣∞,﹣2)∪(1,+∞).故选:B.点评: 本题主要考查函数奇偶性和单调性的应用,等价转化是解题的关键.9.如图所示,在正方体中,,,分别是棱,,上的点,若则的大小是
(
)A.等于
B.小于
C.大于
D.不确定参考答案:A试题分析:根据两向量垂直等价于两向量的数量积为0,所以,所以两向量垂直,即,故选A.考点:空间向量10.已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=logx.设a=f(),b=f(),c=f()则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b参考答案:B【考点】4N:对数函数的图象与性质.【分析】根据已知中f(x)是周期为2的奇函数,当0<x<1时,f(x)=logx.分别判断a,b,c的值,或范围,可得答案.【解答】解:∵f(x)是周期为2的奇函数,当0<x<1时,f(x)=logx.∴a=f()=f(﹣)=﹣f()∈(﹣1,0),b=f()=f(﹣)=﹣f()=﹣1,c=f()=f()=1;∴b<a<c,故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.如图,在正方形ABCD中,E为BC边中点,若=λ+μ,则λ+μ=.参考答案:.【分析】利用正方形的性质、向量三角形法则、平面向量基本定理即可得出.【解答】解:∵,∴=+=+==λ+μ,∴λ=1,.则λ+μ=.故答案为:.12.在三棱柱中,各棱都相等,侧棱垂直底面,点是侧面的中心,则与平面所成角的大小是
参考答案:由题意得,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,得平面,故为与平面所成角,设各棱长为1,则,所以。13.计算
参考答案:014.已知且,则的值为
▲
;参考答案:15.函数的定义域是_________
;参考答案:16.已知集合A={x|x≥1},B={x|x≥a},若A,则实数a的取值范围是.参考答案:(﹣∞,1]【考点】集合的包含关系判断及应用.【分析】利用并集的定义和不等式的性质求解.【解答】解:∵集合A={x|x≥1},B={x|x≥a},A,∴a≤1.∴实数a的取值范围是(﹣∞,1].故答案为:(﹣∞,1].【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意子集定义的合理运用.17.数列{an}满足,则数列{an}的前6项和为_______.参考答案:84【分析】根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在直三棱柱ABC﹣A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.(Ⅰ)求证:BC⊥A1B;(Ⅱ)若P是线段AC上一点,,AB=BC=2,三棱锥A1﹣PBC的体积为,求的值.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【分析】(I)由AD⊥平面A1BC得BC⊥AD,由AA1⊥平面ABC得BC⊥AA1,故BC⊥平面A1AB,所以BC⊥A1B;(II)设PC=x,用x表示出棱锥A1﹣BPC的体积,列出方程解出x,得到AP和PC的值.【解答】(Ⅰ)证明∵AD⊥平面A1BC,BC?平面A1BC,∴AD⊥BC.∵AA1⊥平面ABC,BC?平面ABC,∴AA1⊥BC.又∵AA1∩AD=A,AA1?平面AA1B,AD?平面AA1B,∴BC⊥平面AA1B,∵A1B?平面AA1B,∴BC⊥A1B.(Ⅱ)解:设PC=x,过点B作BE⊥AC于点E.由(Ⅰ)知BC⊥平面AA1B1B,∴BC⊥AB,∵AB=BC=2,∴,.∴,∵AD⊥平面A1BC,其垂足D落在直线A1B上,∴AD⊥A1B.∴BD==1,又∵AA1⊥AB,∴Rt△ABD∽Rt△A1BA,∴,∴.∴=.解得:,∴.∴.19.(10分)已知函数(其中)的周期为,且图象上一个最高点为.(Ⅰ)求的解析式;(Ⅱ)当,求的最值,并写出相应的值.参考答案:解析:(Ⅰ)由得,………1分由最高点为得,且即………3分所以故又,所以,所以……………5分(Ⅱ)因为,∴…………………6分所以当时,即时,取得最小值1;………8分当即时,取得最大值.………………10分略20.(本题14分)函数,图象的一个最高点为,图象两条相邻的对称轴之间的距离为.(1)求函数的解析式;(2)设求的值.参考答案:(1),(2)或21.(1)已知A(-1,2),B(2,8),=,=-,求的坐标.(2)如图,过△OAB的重心G的直线与边OA、OB分别交于P、Q,设O=h,O=k,求证:+是常数.
参考答案:解:(1)∵=(3,6),==(1,2),=-=(-2,-4),∴,∴=(1,2).(2)证明:O=λ1+(1-λ1)O(λ1∈R),O=O+O,且O、G、M三点共线,G为重心,故O=O,
即λ1+(1-λ1)O=×(O+O).又∵O=h,O=k,∴λ1(h)+(1-λ1)(k)=(O+O).而O与O为三角形两邻边,∴O、O不共线.∴消去λ1得=,即+=3.略22.设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,分别求A∩B和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年生物降解塑料项目可行性研究报告
- 2026年工业母机更新项目公司成立分析报告
- 2026年兰州石化职业技术学院单招职业技能笔试备考题库带答案解析
- 2026年吉林铁道职业技术学院单招职业技能考试模拟试题带答案解析
- 2026年居家适老化改造项目可行性研究报告
- 2026年智能微出行(电动滑板车)项目可行性研究报告
- 2026年材料基因分析专用设备项目评估报告
- 2025年全国设备监理师(设备工程质量管理与检验)真题及答案解析
- 2026年智能车载倒车影像系统项目公司成立分析报告
- 2026年天津理工大学中环信息学院单招职业技能笔试模拟试题带答案解析
- 水电厂电气自动化监控系统功能分析
- DB11T 381-2023 既有居住建筑节能改造技术规程
- 计算机应用数学基础 教学 作者 王学军 计算机应用数学课件 第10章 图论
- DF6205电能量采集装置用户手册-2
- 缺血性脑卒中静脉溶栓护理
- 电子电路基础-电子科技大学中国大学mooc课后章节答案期末考试题库2023年
- 四年级科学上册期末试卷及答案-苏教版
- 怀仁县肉牛养殖产业化项目可行性研究报告
- DB51T 2875-2022彩灯(自贡)工艺灯规范
- 主要负责人重大危险源安全检查表
- 《工程经济学》模拟试题答案 东北财经大学2023年春
评论
0/150
提交评论