版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等比数列的前n项和为,且满足,则A.4 B.5 C.8 D.92.下列函数中,满足“且”的是()A. B.C. D.3.在三棱锥中,,,,则三棱锥外接球的表面积为()A. B. C. D.4.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B.C. D.5.已知,,则函数的零点个数为()A.3 B.2 C.1 D.06.若,则s1,s2,s3的大小关系为()A.s1<s2<s3 B.s2<s1<s3 C.s2<s3<s1 D.s3<s2<s17.在的展开式中,的系数等于A.280 B.300 C.210 D.1208.某公共汽车上有5名乘客,沿途有4个车站,乘客下车的可能方式()A.种 B.种 C.种 D.种9.直线的倾斜角是()A. B. C. D.10.的外接圆的圆心为,,,则等于()A. B. C. D.11.若复数是纯虚数,则()A. B. C. D.12.已知,,,若,则()A.-5 B.5 C.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.已知点均在表面积为的球面上,其中平面,,则三棱锥的体积的最大值为__________.14.设函数(为自然对数的底数)的导函数为,则_________.15.,,,,……则根据以上四个等式,猜想第个等式是__________.16.曲线在点处的切线方程为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数有两个不同极值点,且.(Ⅰ)求实数的取值范围;(Ⅱ)若恒成立,求实数的取值范围.18.(12分)已知函数的定义域为,且对任意实数恒有(且)成立.(1)求函数的解析式;(2)讨论在上的单调性,并用定义加以证明.19.(12分)如图,已知四棱锥的底面ABCD为正方形,平面ABCD,E、F分别是BC,PC的中点,,.(1)求证:平面;(2)求二面角的大小.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程与圆的直角坐标方程;(2)设动点在圆上,动线段的中点的轨迹为,与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.21.(12分)已知函数.(1)求曲线在处的切线方程;(2)若方程恰有两个实数根,求a的值.22.(10分)已知一家公司生产某种品牌服装的年固定成本为万元,每生产千件需另投入万元.设该公司一年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由等比数列的通项公式和求和公式代入题中式子可求。【详解】由题意可得,,选D.【点睛】本题考查数列通项公式和求和公式基本量的运算。2、C【解析】
根据题意知,函数在上是减函数,根据选项判断即可。【详解】根据题意知,函数在上是减函数。选项A,在上是增函数,不符合;选项B,在上不单调,不符合;选项C,在上是减函数,符合;选项D,在上是增函数,不符合;综上,故选C。【点睛】本题主要考查函数单调性的定义应用以及常见函数的单调性的判断。3、C【解析】分析:首先通过题中的条件,得到棱锥的三组对棱相等,从而利用补体,得到相应的长方体,列式求得长方体的对角线长,从而求得外接球的半径,利用球体的表面积公式求得结果.详解:对棱相等的三棱锥可以补为长方体(各个对面的面对角线),设长方体的长、宽、高分别是,则有,三个式子相加整理可得,所以长方体的对角线长为,所以其外接球的半径,所以其外接球的表面积,故选C.点睛:该题考查的是有关几何体的外接球的体积问题,在解题的过程中,注意根据题中所给的三棱锥的特征,三组对棱相等,从而将其补体为长方体,利用长方体的外接球的直径就是该长方体的对角线,利用相应的公式求得结果.4、D【解析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,,即,,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.5、B【解析】
由题意可作出函数f(x)和g(x)的图象,图象公共点的个数即为函数h(x)=f(x)−g(x)的零点个数.【详解】可由题意在同一个坐标系中画出f(x)=2lnx,的图象,其中红色的为f(x)=2lnx的图象,由图象可知:函数f(x)和g(x)的图象有2个公共点,即h(x)=f(x)−g(x)的零点个数为2,故选:B.【点睛】本题考查函数的零点问题,属于函数与方程思想的综合运用,求零点个数问题通常采用数形结合方法,画出图像即可得到交点个数,属于中等题.6、B【解析】选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.7、D【解析】
根据二项式定理,把每一项里的系数单独写下来,然后相加,再根据组合数性质,化简求值.【详解】解:在的展开式中,项的系数为.故选D.【点睛】本题主要考查二项式定理展开以及利用组合数性质进行化简求值.8、D【解析】
5名乘客选4个车站,每个乘客都有4种选法.【详解】每个乘客都有4种选法,共有种,选D【点睛】每个乘客独立,且每个乘客都有4种选法9、D【解析】
根据直线方程求得斜率,根据斜率与倾斜角之间的关系,即可求得倾斜角.【详解】设直线的倾斜角为,故可得,又,故可得.故选:D.【点睛】本题考查由直线的斜率求解倾斜角,属基础题.10、C【解析】
,选C11、B【解析】
根据纯虚数的定义求解即可.【详解】因为复数是纯虚数,故,解得.故选:B【点睛】本题主要考查了根据纯虚数求解参数的问题,属于基础题.12、A【解析】
通过平行可得m得值,再通过数量积运算可得结果.【详解】由于,故,解得,于是,,所以.故选A.【点睛】本题主要考查共线与数量积的坐标运算,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先求出球的半径,再求出三棱锥的体积的表达式,最后求函数的最大值.详解:设球的半径为R,所以设AB=x,则,由余弦定理得设底面△ABC的外接圆的半径为r,则所以PA=.所以三棱锥的体积=.当且仅当x=时取等.故答案为点睛:(1)本题主要考查球的体积和几何体的外接球问题,考查基本不等式,意在考查学生对这些基础知识的掌握能力和空间想象能力.(2)三元基本不等式:,当且仅当a=b=c>0时取等.(3)函数的思想是高中数学的重要思想,一般是先求出函数的表达式,再求函数的定义域,再求函数的最值.14、;【解析】
对函数求导,然后把代入导函数中,即可求出的值.【详解】,.【点睛】本题考查了导数的有关运算,正确掌握导数的运算法则和常见函数的导数是解题的关键.15、.【解析】分析:根据已知的四个等式知;等式左边自然对数的指数都是从开始,连续个正整数的和,右边都是.详解:,,,,……由上边的式子,我们可以发现:等式左边自然对数的指数都是从开始,连续个正整数的和,右边都是,可猜想,.故答案为.点睛:本题通过观察几组等式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.16、【解析】试题分析:因为,所以,则在点处的切线斜率为,所以切线方程为,即;故填.考点:导数的几何意义.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)把函数有两个不同极值点转化为有两个不同的实数根,分类讨论,,时,值域情况,从而得到实数的取值范围;(Ⅱ)显然,恒成立,只需讨论的情况,由于,为方程的两个根,从而有,变形可得:所以要使恒成立等价于恒成立,令,利用导数讨论的值域即可。【详解】由题可得的定义域为,,函数有两个不同极值点等价于有两个不同的实数根,令,当时,,则在定义域内单调递增,不可能存在两个根使得,舍去;当时,,则在定义域内单调递增,不可能存在两个根使得,舍去;当时,令,解得:,令时,解得:,所以的增区间为,减区间为,则;由于当时,,当时,,所以要使由两个根,则,解得:;综述所述,实数的取值范围为(Ⅱ)(1)由于,所以当时,显然恒成立,下讨论的情况;(2)当时,由(I),为方程的两个根,从而有,可得:,,所以,要使恒成立等价于恒成立,即恒成立,即恒成立,令,,则,只要使即可,则,,再令,则,可知:在内单调递减,从而,(i)当时,,则,在内单调递增,所以,所以满足条件;(ii)当时,,当时,,由于在内单调递减,根据零点存在定理,可知存在唯一,使得,当时,,单调递增;当时,,单调递减,则,不满足恒成立,故不满足条件;综述所述,实数的取值范围为【点睛】本题主要考查利用导数研究函数单调性和极值,问题(Ⅱ)为极值点偏移问题,常见的处理方法是根据极值点满足的等式构造求证目标满足的等式,再把求证目标不等式归结为函数不等式来证明.18、(1)(2)当时,在上为单调减函数;当时,在上为单调增函数.【解析】试题分析:(1)①,用替换①式中的有:②,由①②消去即可得结果;(2)讨论两种情况,分别利用复合函数的单调性判断其单调性,再利用定义意且,判定的符合,即可证明结论.试题解析:(1)∵对任意实数恒有:①,用替换①式中的有:②,①×②—②得:,(2)当时,函数为单调减函数,函数也为单调减函数,∴在上为单调减函数.当时,函数为单调增函数,函数也为单调增函数,∴在上为单调增函数.证明:设任意且,则,∵,,①当时,则,∴∴在上是减函数.②当时,则,∴∴在上是增函数.综上:当时,在上为单调减函数;当时,在上为单调增函数.19、(1)见解析(2)【解析】
(1)(2)以A为原点,如图所示建立直角坐标系,,设平面FAE法向量为,则,,20、(1)的直角坐标方程是.直线的普通方程为.(2).【解析】
(1)消去参数后可得的普通方程,把化成,利用互化公式可得的直角方程.(2)设点,则,利用在椭圆上可得的直角方程,联立直线的普通方程和的直角坐标方程可得的直角坐标.【详解】解:(1)由,得,将互化公式代上式,得,故圆的直角坐标方程是.由,得,即.所以直线的普通方程为.(2)设点.由中点坐标公式得曲线的直角坐标方程为.联立,解得,或.故点的直角坐标是.【点睛】极坐标转化为直角坐标,关键是,而直角坐标转化为极坐标,关键是.参数方程化为直角方法,关键是消去参数,消参的方法有反解消参、平方消参、交轨法等.21、(1)(2)【解析】
(1)根据已知求得,可求得曲线在处的切线方程;(2)由方程恰有两个实数根,进行参变分离得,构造函数,对所构造的函数求导,分析出其导函数的正负,得出所构造的函数的单调性和图象趋势,极值,从而可得出a的值.【详解】(1)函数,,,曲线在处的切线方程为,即.(2)方程恰有两个实数根,即恰有两个实数根,∵,所以可得,显然时,上式不成立;设,则,当或时,,单调递增;当时,,单调递减;,,又当时,,当时,,,得.【点睛】本题考查求在函数上的一点的切线方程,和根据方程的根的情况求参数的值,解决的关键在于进行参变分离,构造合适的函数,并对所构造的函数求导,分析其导函数的正负,得所构造的函数的单调性和图象趋势和极值,属于常考题,难度题.22、(1)(2)当年产量为9千件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烤漆作业标准指南
- 2026年泉州轻工职业学院单招职业适应性测试题库及参考答案详解一套
- 《正常人体功能》课件-体温
- 劳务派遣人员工资支付担保协议
- 中药材行业中药提取技术员岗位招聘考试试卷及答案
- 2026年小学生心理健康教育工作计划
- 2025年固体分散载体材料项目合作计划书
- 2025年放射性污染防治合作协议书
- 术后虚弱的饮食调养
- 辽宁省2025秋九年级英语全册Unit3Couldyoupleasetellmewheretherestroomsare课时3SectionA(GrammarFocus-4c)课件新版人教新目标版
- 2026年保安员考试题库500道附完整答案(历年真题)
- 2025至2030中国司法鉴定行业发展研究与产业战略规划分析评估报告
- (2025年)危重病人的观察与护理试题及答案
- 膝关节韧带损伤康复课件
- 建筑施工项目职业病危害防治措施方案
- 船员上船前安全培训课件
- 袖阀注浆管施工方案
- 市政工程桩基检测技术操作规程
- 如何申请法院提审申请书
- 中医内科慢性胃炎中医诊疗规范诊疗指南2025版
- SCI审稿人回复课件
评论
0/150
提交评论