版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升2.的展开式中含项的系数为()A.160 B.210 C.120 D.2523.下列命题中,真命题是()A. B.C.的充要条件是 D.是的充分条件4.将3名教师,5名学生分成3个小组,分别安排到甲、乙、丙三地参加社会实践活动,每地至少去1名教师和1名学生,则不同的安排方法总数为()A.1800 B.1440 C.300 D.9005.已知是虚数单位,则在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若对任意实数,有,则()A. B. C. D.7.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.8.函数的图象在处的切线方程为()A. B. C. D.9.函数的单调递增区间为(
)A. B. C. D.10.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星至地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c.李明根据所学的椭圆知识,得到下列结论:①卫星向径的最小值为a-c,最大值为a+c;②卫星向径的最小值与最大值的比值越小,椭圆轨道越扁;③卫星运行速度在近地点时最小,在远地点时最大其中正确结论的个数是A.0 B.1 C.2 D.311.圆与圆的公切线有几条()A.1条 B.2条 C.3条 D.4条12.()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若表示的动点的轨迹是椭圆,则的取值范围是________.14.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.15.若双曲线的焦点在轴上,焦距为,且过点,则双曲线的标准方程为______.16.若随机变量,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角,,所对的边分别为,,.已知,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求不等式的解集;(2)若不等式的解集非空,求的取值范围.19.(12分)已知函数.(1)若函数在上是减函数,求实数的取值范围;(2)若函数在上存在两个极值点,,且,证明:.20.(12分)已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.21.(12分)已知函数.(1)解关于的不等式;(2)对任意的,都有不等式恒成立,求实数的取值范围.22.(10分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).1)求样本容量和频率分布直方图中的2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在[80,90)内的株数,求随机变量的分布列及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.2、D【解析】
先化简,再由二项式通项,可得项的系数.【详解】,,当时,.故选D.【点睛】本题考查二项式展开式中指定项的系数,解题关键是先化简再根据通项公式求系数.3、D【解析】A:根据指数函数的性质可知恒成立,所以A错误.
B:当时,,所以B错误.
C:若时,满足,但不成立,所以C错误.D:则,由充分必要条件的定义,,是的充分条件,则D正确.
故选D.4、D【解析】
将三个教师全排列安排到三地,再利用分组、分配方法安排学生,可求出答案.【详解】先将3名教师安排到甲、乙、丙三地有种分法,然后安排5名学生,将5名学生可分为1,1,3三组,也可分为2,2,1三组,则安排到三地有种方法;根据分步乘法原理,可知不同的安排方法总数为种.故选D.【点睛】本题考查了分步乘法原理的应用,考查了分配问题,考查了计算能力,属于中档题.5、A【解析】
分子分母同时乘以,化简整理,得出,再判断象限.【详解】,在复平面内对应的点为(),所以位于第一象限.故选A.【点睛】本题考查复数的基本运算及复数的几何意义,属于基础题.6、B【解析】分析:根据,按二项式定理展开,和已知条件作对比,求出的值,即可求得答案.详解:,且,.故选:B.点睛:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数.7、C【解析】
先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可.【详解】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得.所以在区间上随机取一个数,使直线与圆相交的概率为.故选C.【点睛】本题以直线和圆的位置关系为载体考查几何概型,解题的关键是由直线和圆相交求出参数的取值范围,然后根据公式求解,考查转化和计算能力,属于基础题.8、A【解析】
先求出切点的坐标和切线的斜率,再写出切线的方程.【详解】当x=1时,f(1)=-2+0=-2,所以切点为(1,-2),由题得,所以切线方程为y+2=-1·(x-1),即:故选:A【点睛】本题主要考查导数的几何意义和切线方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、D【解析】
先求出函数的定义域,然后根据复合函数的单调性满足“同增异减”的结论求解即可.【详解】由可得或,∴函数的定义域为.设,则在上单调递减,又函数为减函数,∴函数在上单调递增,∴函数的单调递增区间为.故选D.【点睛】(1)复合函数的单调性满足“同增异减”的结论,即对于函数来讲,它的单调性依赖于函数和函数的单调性,当两个函数的单调性相同时,则函数为增函数;否则函数为减函数.(2)解答本题容易出现的错误是忽视函数的定义域,误认为函数的单调递增区间为.10、C【解析】
根据椭圆的焦半径的最值来判断命题①,根据椭圆的离心率大小与椭圆的扁平程度来判断命题②,根据题中“速度的变化服从面积守恒规律”来判断命题③。【详解】对于命题①,由椭圆的几何性质得知,椭圆上一点到焦点距离的最小值为a-c,最大值为a+c,所以,卫星向径的最小值为a-c,最大值为a+c,结论①正确;对于命题②,由椭圆的几何性质知,当椭圆的离心率e=ca越大,椭圆越扁,卫星向径的最小值与最大值的比值a-ca+c对于命题③,由于速度的变化服从面积守恒规律,即卫星的向径在相同的时间内扫过的面积相等,当卫星越靠近远地点时,向径越大,当卫星越靠近近地点时,向径越小,由于在相同时间扫过的面积相等,则向径越大,速度越小,所以,卫星运行速度在近地点时最大,在远地点时最小,结论③错误。故选:C。【点睛】本题考查椭圆的几何性质,考查椭圆几何量对椭圆形状的影响,在判断时要充分理解这些几何量对椭圆形状之间的关系,考查分析问题的能力,属于中等题。11、C【解析】
首先求两圆的圆心距,然后判断圆心距与半径和或差的大小关系,最后判断公切线的条数.【详解】圆,圆心,,圆,圆心,,圆心距两圆外切,有3条公切线.故选C.【点睛】本题考查了两圆的位置关系,属于简单题型.12、C【解析】
根据定积分的运算公式,可以求接求解.【详解】解:,故选C.【点睛】本题考查了定积分的计算,熟练掌握常见被积函数的原函数是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据复数几何意义以及椭圆定义列关于的条件,再解不等式得的取值范围.【详解】因为表示的动点的轨迹是椭圆,所以复数所对应点距离小于4,即故答案为:【点睛】本题考查复数几何意义以及椭圆定义,考查综合分析求解能力,属中档题.14、【解析】
设三边按递增顺序排列为,其中.则,即.解得.由q≥1知q的取值范围是1≤q<.设三边按递减顺序排列为,其中.则,即.解得.综上所述,.15、【解析】
设双曲线的标准方程为,利用双曲线的定义求出的值,结合焦距求出的值,从而可得出双曲线的标准方程.【详解】设双曲线的标准方程为,由题意知,该双曲线的左、右焦点分别为、,由双曲线的定义可得,,则,因此,双曲线的标准方程为.故答案为:.【点睛】本题考查过点求双曲线的方程,在双曲线的焦点已知的前提下,可以利用定义来求双曲线的标准方程,也可以利用待定系数法求解,考查运算求解能力,属于中等题.16、【解析】
由条件求得,可得正态分布曲线的图象关于直线对称.求得的值,根据对称性,即可求得答案.【详解】随机变量,且,可得,正态分布曲线的图象关于直线对称.,故答案为:.【点睛】本题考查了正态分布曲线的特点及曲线所表示的意义,考查了分析能力和计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)由于,计算出再通过正弦定理即得答案;(Ⅱ)可先求出,然后利用和差公式即可求得答案.【详解】(Ⅰ)解:,且,∴,又,∴,由正弦定理,得,∴的值为.(Ⅱ)由题意可知,,∴,.【点睛】本题主要考查三角恒等变换,正弦定理的综合应用,意在考查学生的分析能力,计算能力,难度不大.18、(1);(2)【解析】
将函数写出分段函数形式,再分段解不等式。不等式的解集非空即。【详解】(1)或或无解或或或原不等式的解集为(2)若要的解集非空只要即可故的取值范围为【点睛】本题考查含绝对值的不等式,考查逻辑推理能力与计算能力,属于基础题。19、(1);(2)见解析.【解析】分析:(1)由题意得出在定义域上恒成立,即,设,则,由此利用导数求得函数单调性与最值,即可求解;(2)由(1)知,由函数在上存在两个极值点,,推导出∴,设,则,要证,只需证,构造函数,利用导数求得函数的单调性与最值,即可作出求解.详解:(1)∵在上是减函数,∴在定义域上恒成立,∴,设,则,由,得,由,得,∴函数在上递增,在上递减,∴,∴.故实数的取值范围是.证明:(2)由(1)知,∵函数在上存在两个极值点,,且,∴,则,∴,∴,设,则,要证,只需证,只需证,只需证,构造函数,则,∴在上递增,∴,即,∴.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.20、【解析】试题分析:先化简命题,得到相应的数集;再根据真值表得到的真假性,再分类进行求解.试题解析:若命题为真命题,则,即整理得,解得4分若命题为真命题,则,解得8分因为命题为假命题,为真命题,所以中一真一假,10分若真假,则;若假真,则,所以实数的取值范围为.12分考点:1.圆的一般方程;2.双曲线的结合性质;3.复合命题的真值表.21、(1);(2).【解析】
(1)由题意,分类讨论即可得解;(2)利用绝对值三角不等式求出,利用基本不等式求出,利用恒成立问题的解决办法即可得解.【详解】(1)由题意,则不等式可转化为或或,整理可得,故不等式的解集为.(2)由于,当时,等号成立;而,当且仅当,即,时,等号成立.要使不等式恒成立,则,解得,实数的取值范围为.【点睛】本题考查了绝对值不等式的解法,考查了绝对值三角不等式和基本不等式的应用,考查了恒成立问题的解决,属于中档题.22、(1)见解析;(2)见解析.【解析】分析:(1)由茎叶图及频率分布直方图能求出样本容量n和频率分布直方图中的x,y;(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025采购类合同范本样式
- 2025年短视频代运营合同协议(效果)
- 2025关于个人的房屋租赁合同范本
- 2025年工业电钻采购质量成本控制策略报告
- 2025年新能源行业绿色建筑技术应用研究报告
- 2025工程承包劳务合同协议
- 2025年共享汽车充电服务市场竞争策略分析报告
- 2025年互联网广告代理合同付款补充协议
- 2025船舶购买买卖合同
- 粮油店活动策划方案
- 2024年西安培华学院辅导员考试真题
- DB32T 5030-2025工业有机废气治理用活性炭通 用技术要求
- 蓝天救援队员管理制度
- 《电力机车制动系统检修与维护》课件 项目四任务二认知CAB型制动系统
- 泰康培训测试题及答案
- 资质代办协议
- 临床教学案例库的构建策略与实施
- 基础设施建设投资合同
- 小学国学主题校本课程计划
- 老年重症患者静脉血栓栓塞症预防中国专家共识(2023)解读
- 企业管理-电信客户经理岗位职责说明书
评论
0/150
提交评论