版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的二项展开式的各项系数和为32,则二项展开式中的系数为()A.5 B.10 C.20 D.402.已知,则下列结论正确的是A.是偶函数 B.是奇函数C.是奇函数 D.是偶函数3.已知等比数列中,,则等于()A.9 B.5 C. D.无法确定4.下列说法正确的个数有()①用刻画回归效果,当越大时,模型的拟合效果越差;反之,则越好;②命题“,”的否定是“,”;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。A.1个 B.2个 C.3个 D.4个5.中,角A,B,C的对边分别是a,b,c,已知,则A=A. B. C. D.6.运行下列程序,若输入的的值分别为,则输出的的值为A. B.C. D.7.设等比数列的前n项和为,公比,则()A. B. C. D.8.在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有()A.180种 B.150种 C.96种 D.114种9.已知函数在处有极值10,则等于()A.1 B.2 C.—2 D.—110.对任意非零实数,若※的运算原理如图所示,则※=()A.1 B.2 C.3 D.411.用反证法证明命题“已知为非零实数,且,,求证中至少有两个为正数”时,要做的假设是()A.中至少有两个为负数 B.中至多有一个为负数C.中至多有两个为正数 D.中至多有两个为负数12.“石头、剪刀、布”,又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是一算法的伪代码,则输出值为____________.14.已知抛物线:,点是它的焦点,对于过点且与抛物线有两个不同公共点,的任一直线都有,则实数的取值范围是______.15.设是复数,表示满足的最小正整数,则对虚数单位,______.16.某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案种数为__________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)讨论的单调性;(2)若存在两个极值点,且,,证明:.18.(12分)在极坐标系中,圆的方程为.以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,设直线的参数方程为(为参数).(1)求圆的标准方程和直线的普通方程;(2)若直线与圆交于两点,且,求实数的取值范围.19.(12分)若展开式中第二、三、四项的二项式系数成等差数列.(1)求的值及展开式中二项式系数最大的项;(2)此展开式中是否有常数项,为什么?20.(12分)在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)求曲线上的直线距离最大的点的直角坐标.21.(12分)已知函数=│x+1│–│x–2│.(1)求不等式≥1的解集;(2)若不等式≥x2–x+m的解集非空,求实数m的取值范围.22.(10分)有甲、乙两个游戏项目,要参与游戏,均需每次先付费元(不返还),游戏甲有种结果:可能获得元,可能获得元,可能获得元,这三种情况的概率分别为,,;游戏乙有种结果:可能获得元,可能获得元,这两种情况的概率均为.(1)某人花元参与游戏甲两次,用表示该人参加游戏甲的收益(收益=参与游戏获得钱数-付费钱数),求的概率分布及期望;(2)用表示某人参加次游戏乙的收益,为任意正整数,求证:的期望为.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B.【点睛】本题考查二项式展开系数、通项等公式,属于基础题.2、A【解析】因为,所以,又,故,即答案C,D都不正确;又因为,所以应选答案A.3、A【解析】
根据等比中项定义,即可求得的值。【详解】等比数列,由等比数列中等比中项定义可知而所以所以选A【点睛】本题考查了等比中项的简单应用,属于基础题。4、C【解析】分析:结合相关系数的性质,命题的否定的定义,回归方程的性质,推理证明即可分析结论.详解:①为相关系数,相关系数的结论是:越大表明模拟效果越好,反之越差,故①错误;②命题“,”的否定是“,”;正确;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;根据回归方程必过样本中心点的结论可得③正确;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。根据综合法和分析法定义可得④的描述正确;故正确的为:②③④故选C.点睛:考查命题真假的判断,对命题的逐一分析和对应的定义,性质的理解是解题关键,属于基础题.5、C【解析】试题分析:由余弦定理得:,因为,所以,因为,所以,因为,所以,故选C.【考点】余弦定理【名师点睛】本题主要考查余弦定理的应用、同角三角函数的基本关系,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.6、B【解析】分析:按照程序框图的流程逐一写出即可详解:第一步:第二步:第三步:第四步:最后:输出.,故选B.点睛:程序框图的题学生只需按照程序框图的意思列举前面有限步出来,观察规律,得出所求量与步数之间的关系式.7、D【解析】
由等比数列的通项公式与前项和公式分别表示出与,化简即可得到的值【详解】因为等比数列的公比,则,故选D.【点睛】本题考查等比数列的通项公式与前项和公式,属于基础题。8、D【解析】分析:先不管条件甲和乙不能安排在同一个路口,先算出总共的安排方法,再减去甲和乙在同一个路口的情况即可.详解:先不管条件甲和乙不能安排在同一个路口,分两种情况:①三个路口人数情况3,1,1,共有种情况;②三个路口人数情况2,2,1,共有种情况.若甲乙在同一路口,则把甲乙看作一个整体,则相当于将4名特警分配到三个不同的路口,则有种,故甲和乙不能安排在同一个路口,不同的安排方法有种.故选:D.点睛:本题考查排列、组合的实际应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.9、B【解析】,,函数
在处有极值为10,,解得.经检验知,符合题意.,.选B.点睛:由于导函数的零点是函数极值点的必要不充分条件,故在求出导函数的零点后还要判断在该零点两侧导函数的值的符号是否发生变化,然后才能作出判断.同样在已知函数的极值点求参数的值时,根据求得参数的值后应要进行检验,判断所求参数是否符合题意,最终作出取舍.10、A【解析】
分析:由程序框图可知,该程序的作用是计算分段函数函数值,由分段函数的解析式计算即可得结论.详解:由程序框图可知,该程序的作用是计算※函数值,※※因为,故选A.点睛:算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.11、A【解析】分析:用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a、b、c中至少有二个为负数”,由此得出结论.详解:用反证法证明某命题时,应先假设命题的否定成立,而:“中至少有二个为正数”的否定为:“中至少有二个为负数”.故选A.点睛:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面是解题的关键,着重考查了推理与论证能力.12、B【解析】根据“石头”胜“剪刀”,“剪刀”胜“布”,而“布”又胜“石头”,可得每局比赛中小军胜大明、小军与大明和局和小军输给大明的概率都为,∴小军和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大年比赛至第四局小军胜出,由指前3局中小军胜2局,有1局不胜,第四局小军胜,∴小军和大年比赛至第四局小军胜出的概率是:.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】分析:按照循环体执行,直到跳出循环详解:第一次循环后:S=7,n=6;第二次循环后:S=13,n=5;第三次循环后:S=18,n=4;不成立,结束循环所以输出值为4点睛:程序题目在分析的时候一定要注意结束条件,逐次执行程序即可.14、【解析】
设直线的方程为,联立抛物线的方程得出韦达定理,将翻译成关于点,的关系式,再代入韦达定理求解即可.【详解】设直线的方程为,则,设,.则.则由得.代入韦达定理有恒成立.故故答案为:【点睛】本题主要考查了直线与抛物线的位置关系,设而不求利用韦达定理翻译题目条件从而进行运算的方法等.属于中等题型.15、4【解析】
逐个计算即可.【详解】由题,因为,故.故答案为:4【点睛】本题主要考查新定义与复数的基本运算,属于基础题型.16、【解析】法一:4人中至少有1名女生包括1女3男及2女2男两种情况,
故不同的选派方案种数为C12•C34+C22•C24=2×4+1×6=1;法二:从4男2女中选4人共有C46种选法,4名都是男生的选法有C44种,
故至少有1名女生的选派方案种数为C46-C44=15-1=1.故答案为1点睛:本题考查简单的排列组合,建议如果分类讨论太复杂的题目最好用间接法即排除法,以避免直接的分类不全情况出现.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】
求导后对参量进行分类讨论,得到函数的单调性由极值点求出两根之和与两根之积,将二元转化为一元来求证不等式【详解】(1)由题意得,的定义域为,,①当时,,又由于,,故,所以在上单调递减;②当时,,,故,所以在上单调递增;③当时,由,解得,因此在上单调递减,在和上单调递增;综上所述,当时,在上单调递减;当时,在上单调递增;当时,在上单调递减,在和上单调递增.(2)由(1)知,当时,有两个极值点,由,知,则,设,,,则在单调递增,即,则,即.【点睛】求含有参量的函数的单调区间,运用导数进行分类讨论,得到在定义域内不同的单调性,在证明不等式时结合的根与系数之间的关系,进行消元转化为一元问题,从而证明出结果,本题综合性较强,有一定难度。18、(1)详见解析;(2)。【解析】试题分析:(1)由得,根据极坐标与直角坐标互化公式,,所以圆C的标准方程为,直线的参数方程为,由得,代入得:,整理得:;(2)直线与圆C相交于A,B两点,圆心到直线:距离,根据直线与圆相交所得的弦长公式,所以,由题意,所以得,即,整理得:,即,解得:。试题解析:(1)的直角坐标方程为,在直线的参数方程中消得:;(2)要满足弦及圆的半径为可知只需圆心到直线的距离即可。由点到直线的距离公式有:,整理得:即解得:,故实数的取值范围为:考点:1.极坐标;2.参数方程。19、(1)第四项为第五项为.(2)无常数项.【解析】分析:(1)先根据题意得到,解方程即得n=7.二项式系数最大的项为第四项和第五项,求第四项和第五项的二项式系数即得解.(2)假设展开式中有常数项,求出r的值,如果r有正整数解,则有,否则就没有.详解:(1)由题意可得,解得.所以展开式有8项,所以第四项和第五项的二项式系数最大,第四项为第五项为.(2)展开式的通项公式为,令,解得(舍去),故展开式无常数项.点睛:(1)本题主要考查二项式定理的二项式系数,考查特定项的求法,意在考查学生对这些知识的掌握水平和基本运算能力.(2)二项式通项公式:(),其中叫二项式展开式第项的二项式系数,而二项式展开式第项的系数是字母幂前的常数.20、(1)(2)【解析】分析:(1)利用极坐标与直角坐标互化公式可得曲线的直角坐标方程为.(2)直线方程为,设圆上点的坐标为,结合点到直线距离公式和三角函数的性质可知满足题意时点坐标为.详解:(1)因为,,,所以曲线的直角坐标方程为.(2)直线方程为,圆的标准方程为,所以设圆上点坐标为,则,所以当,即时距离最大,此时点坐标为.点睛:本题主要考查极坐标方程与直角坐标方程的转化,直线与圆的位置关系,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.21、(1);(2).【解析】
(1)由于f(x)=|x+1|﹣|x﹣2|,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财险业务建议课件
- 2026年安徽中医药高等专科学校高职单招职业适应性测试参考题库有答案解析
- 基因检测与精准医疗技术
- 2026年湖南工艺美术职业学院单招职业技能考试参考题库带答案解析
- 2026年福建艺术职业学院单招综合素质考试参考题库带答案解析
- 中医与现代医学结合研究
- 护理护理质量改进与提升
- 医院财务状况与预算执行总结
- 医院营养膳食管理人员职业素养
- XX公司年产10万吨铜加工(年产纯铜杆(无氧铜杆)7万吨、2万吨铜排、1万吨铜丝)项目环评报告表
- 2026年小学一二年级第一学期无纸笔化考核方案及测试题(一二年级语文数学)
- 2025四川金融控股集团有限公司招聘16人笔试参考题库附带答案详解(3卷合一)
- 2025年人文常识竞赛题库及答案
- 2025年时事政治试题库完整参考详解(完整版)及答案
- 学校副校长中层干部和群团组织负责人绩效考核实施细则
- 新车交车课件
- 太平保险项目经理资格考试大纲含答案
- 耳鼻喉科护士长2025年度述职报告
- 编程技术培训学校教学体系介绍
- 水产总碱度总硬度课件
- 2025年山东省东营市中考化学真题
评论
0/150
提交评论