2023年湖北省黄冈实验学校数学高二第二学期期末教学质量检测模拟试题含解析_第1页
2023年湖北省黄冈实验学校数学高二第二学期期末教学质量检测模拟试题含解析_第2页
2023年湖北省黄冈实验学校数学高二第二学期期末教学质量检测模拟试题含解析_第3页
2023年湖北省黄冈实验学校数学高二第二学期期末教学质量检测模拟试题含解析_第4页
2023年湖北省黄冈实验学校数学高二第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.使不等式成立的一个必要不充分条件是()A. B. C. D.2.设袋中有大小相同的80个红球、20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为()A. B. C. D.3.设函数,则()A.为的极大值点 B.为的极小值点C.为的极大值点 D.为的极小值点4.已知展开式中项的系数为5,则=()A. B.π C.2π D.4π5.若双曲线的一条渐近线被圆所截得的弦长为2,则双曲线的离心率为()A. B.2 C. D.6.设两个正态分布和的密度函数图像如图所示.则有()A.B.C.D.7.若曲线在点处的切线方程为,则()A.-1 B. C. D.18.已知是等差数列的前n项和,且,则的通项公式可能是()A. B. C. D.9.利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”10.如图,点分别在空间直角坐标系的三条坐标轴上,,平面的法向量为,设二面角的大小为,则().A. B. C. D.11.给定空间中的直线及平面,条件“直线上有两个不同的点到平面的距离相等”是“直线与平面平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件12.若函数图象上存在两个点,关于原点对称,则对称点为函数的“孪生点对”,且点对与可看作同一个“孪生点对”.若函数恰好有两个“孪生点对”,则实数的值为()A.0 B.2 C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知为偶函数,当时,,则__________.14.某学校为了了解住校学生每天在校平均开销情况,随机抽取了名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图三所示,则其中每天在校平均开销在元的学生人数为_________.15.已知函数若函数有3个零点,则实数a的取值范围为____.16.已知过抛物线的焦点F的直线交该抛物线于A、B两点,,则=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,若直线与函数,的图象均相切.(1)求实数的值;(2)当时,求在上的最值.18.(12分)已知关于的方程x2+kx+k2﹣2k=0有一个模为的虚根,求实数k的值.19.(12分)随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.(1)根据数据可知与具有线性相关关系,请建立关于的回归方程(系数精确到);(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量,,则每位员工每日奖励100元;,则每位员工每日奖励150元;,则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)参考数据:,,其中,分别为第个月的促销费用和产品销量,.参考公式:(1)对于一组数据,,,,其回归方程的斜率和截距的最小二乘估计分别为,.(2)若随机变量服从正态分布,则,.20.(12分)已知函数.(1)解不等式;(2)记函数的值域为M,若,证明:.21.(12分)设函数,,(其中).(1)时,求函数的极值;(2)证:存在,使得在内恒成立,且方程在内有唯一解.22.(10分)某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:汽车行驶路线在不堵车的情况下到达城市乙所需时间(天)在堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路1142公路2231(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;(2)若,,选择哪条公路运送啤酒厂家获得的毛收人更多?(注:毛收入=销售商支付给厂家的费用-运费).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】解不等式,可得,即,故“”是“”的一个必要不充分条件,故选B.2、D【解析】本题是一个古典概型,∵袋中有80个红球20个白球,若从袋中任取10个球共有种不同取法,而满足条件的事件是其中恰有6个红球,共有种取法,由古典概型公式得到P=,本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.3、D【解析】试题分析:因为,所以.又,所以为的极小值点.考点:利用导数研究函数的极值;导数的运算法则.点评:极值点的导数为0,但导数为0的点不一定是极值点.4、B【解析】

通过展开式中项的系数为列方程,解方程求得的值.利用几何法求得定积分的值.【详解】展开式中项为即,条件知,则;于是被积函数图像,围成的图形是以为圆心,以2为半径的圆的,利用定积分的几何意义可得,选B.【点睛】本小题主要考查二项式展开式,考查几何法计算定积分,属于中档题.5、B【解析】

写出双曲线的渐近线方程,由圆的方程得到圆心坐标与半径,结合点到直线的距离公式与垂径定理列式求解.【详解】解:双曲线的渐近线方程为,由对称性,不妨取,即.圆的圆心坐标为,半径为,则圆心到渐近线的距离,,解得.故选:B.【点睛】本题考查双曲线的简单性质,考查直线与圆位置关系的应用,属于中档题.6、A【解析】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A.7、B【解析】分析:求出导数,求得切线的斜率,由切线方程可得,即可得到答案.详解:的导数为,曲线在点处的切线方程为,有,解得.故选:B.点睛:本题考查导数的运用,求切线的斜率,注意运用导数的几何意义,正确求导是解题的关键.8、D【解析】

由等差数列的求和公式,转化为,故,分析即得解【详解】由题意,等差数列,且可得故所以当时,则的通项公式可能是故选:D【点睛】本题考查了等差数列的通项公式和求和公式,考查了学生概念理解,数学运算的能力,属于中档题.9、A【解析】

根据题意知观测值,对照临界值得出结论.【详解】利用独立性检验的方法求得,对照临界值得出:有95%的把握认为“写作水平与喜好阅读有关”.故选A项.【点睛】本题考查了独立性检验的应用问题,是基础题.10、C【解析】由题意可知,平面的一个法向量为:,由空间向量的结论可得:.本题选择C选项.点睛:(1)本题求解时关键是结合题设条件进行空间联想,抓住条件有目的推理论证.(2)利用空间向量求线面角有两种途径:一是求斜线和它在平面内射影的方向向量的夹角(或其补角);二是借助平面的法向量.11、B【解析】分析:利用直线与平面平行的定义判断即可.详解:直线上有两个不同的点到平面的距离相等,如果两点在平面同侧,则;如果两点在平面异侧,则与相交:反之,直线与平面平行,则直线上有两个不同的点到平面的距离相等.故条件“直线上有两个不同的点到平面的距离相等”是“直线与平面平行”的必要非充分条件.故选B.点睛:明确:则是的充分条件,,则是的必要条件.准确理解线面平行的定义和判定定理的含义,才能准确答题.12、A【解析】分析:由题可知当时,与恰有两个交点.根据函数的导数确定的图象,即可求得实数的值.详解:由题可知,当时,与恰有两个交点.函数求导()易得时取得极小值;时取得极大值另可知,所得函数图象如图所示.当,即时与恰有两个交点.当时,恰好有两个“孪生点对”,故选A.点睛:本题主要考查新定义,通过审题,读懂题意,选择解题方向,将问题转化为当时,与恰有两个交点是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力14、1【解析】分析:由频率分布直方图,得每天在校平均开销在[50,60]元的学生所点的频率为0.3,由此能求出每天在校平均开销在[50,60]元的学生人数.详解:由频率分布直方图,得:每天在校平均开销在[50,60]元的学生所点的频率为:1﹣(0.01+0.024+0.036)×10=0.3∴每天在校平均开销在[50,60]元的学生人数为500×0.3=1.故答案为1点睛:本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,意在考查学生对这些基础知识的掌握能力.15、【解析】

将函数有3个零点转化为与有三个交点,在同一坐标系中作出两函数的图象,即可求得实数的取值范围.【详解】作出的函数图象如图所示:画出函数的图象,由图象可知当时,有1零点,当时,有3个零点;当或时,有2个零点。故答案为.【点睛】本题考查根的存在性及根的个数判断,将函数有3个零点转化为与有三个交点是关键,考查等价转化思想与数形结合思想的综合运用,属于中档题.16、2【解析】试题分析:焦点坐标,准线方程,由|AF|=2可知点A到准线的距离为2,所以轴,考点:抛物线定义及直线与抛物线相交的弦长问题点评:抛物线定义:抛物线上的点到焦点的距离等于到准线的距离,依据定义可实现两个距离的转化三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),或;(2),.【解析】

(1)由直线与二次函数相切,可由直线方程与二次函数关系式组成的方程组只有一个解,然后由判别式等于零可求出的值,再设出直线与函数图像的切点坐标,由切点处的导函数值等于切线的斜率可求出切点坐标,从而可求出的值;(2)对函数求导,使导函数为零,求出极值点,然后比较极值和端点处的函数值大小,可求出函数的最值.【详解】(1)联立可得,,设直线与的图象相切于点,则,或当时,,当时,,或(2)由(1),,令则或;令则在和上单调递增,在上单调递减又,,,【点睛】此题考查导数的几何意义,利用导数求最值,属于基础题.18、1【解析】分析:设两根为、,则,,得,利用韦达定理列方程可求得的值,结合判别式小于零即可得结果.详解:由题意,得或,设两根为、,则,,得,.所以.点睛:本题考查复数代数形式乘除运算,韦达定理的使用,实系数方程有虚数根的条件,共轭复数的性质、共轭复数的模,意在考查基础知识的掌握与综合应用,属于中档题.19、(1)(2)【解析】试题分析:(1)先求均值,再代入公式求以及,即得回归方程,(2)先根据正态分布计算各区间概率,再根据概率乘以总数得频数,最后将频数与对应奖励相乘求和得结果.试题解析:(1)由题可知,,将数据代入得所以关于的回归方程(2)由题6月份日销量服从正态分布,则日销量在的概率为,日销量在的概率为,日销量的概率为,所以每位员工当月的奖励金额总数为元.20、(1)(2)见解析【解析】

(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)根据绝对值三角不等式得最小值,即得值域为,再作差并因式分解,根据各因子符号确定差的符号即得结果.【详解】(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,∴.原不等式等价于.∵,∴,.∴.∴.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.21、(1);;(2)见解析.【解析】

(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)求出f(x)的导数,通过讨论m的范围,求出f(x)的单调区间,求出满足条件的m的范围,从而证出结论即可.【详解】解:(I)当时,,令,得,,当变化时,的变化如下表:极大值极小值由表可知,;;(II)设,,,若要有解,需有单减区间,则要有解,由,,记为函数的导数则,当时单增,令,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论