版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在单调递增,且为奇函数,若,则满足的的取值范围是().A. B. C. D.2.椭圆与直线相交于两点,过中点与坐标原点连线斜率为,则()A. B. C.1 D.23.用反证法证明“方程至多有两个解”的假设中,正确的是()A.至少有两个解 B.有且只有两个解C.至少有三个解 D.至多有一个解4.已知函数,若函数有个零点,则实数的取值范围为()A. B. C. D.5.在平行四边形中,为线段的中点,若,则()A. B. C. D.6.已知双曲线的一条渐近线与轴所形成的锐角为,则双曲线的离心率为()A. B. C.2 D.或27.某车间加工零件的数量x与加工时间y的统计数据如图:现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()零件个数x(个)102030加工时间y(分钟)213039A.112分钟 B.102分钟 C.94分钟 D.84分钟8.要将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则甲被分到班的概率为()A. B. C. D.9.下列叙述正确的是()A.若命题“p∧q”为假命题,则命题“p∨q”是真命题B.命题“若x2=1,则x=1”的否命题为“若xC.命题“∀x∈R,2x>0”的否定是“∀xD.“α>45°”是“10.2021年起,新高考科目设置采用“”模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:①样本中的女生更倾向于选历史;②样本中的男生更倾向于选物理;③样本中的男生和女生数量一样多;④样本中意向物理的学生数量多于意向历史的学生数量.根据两幅条形图的信息,可以判断上述结论正确的有()A.1个 B.2个 C.3个 D.4个11.己知变量x,y的取值如下表:x3456y2.5344.5由散点图分析可知y与x线性相关,且求得回归方程为,据此预测:当时,y的值约为A.5.95 B.6.65 C.7.35 D.712.若数列是等比数列,则“首项,且公比”是“数列单调递增”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.非充分非必要条件二、填空题:本题共4小题,每小题5分,共20分。13.双曲线上一点到点的距离为9,则点到点的距离______.14.若,则的值为__________.15.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________16.已知复数z=2+6i,若复数mz+m2(1+i)为非零实数,求实数m的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学生社团对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排进行分层抽样,并完成一项试验,试验方法是:使两组学生记忆40个无意义音节(如xiq,geh),均要求刚能全部记清就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点不含右端点).(1)估计1000名被调查的学生中识记停止8小时后40个音节的保持率大于或等于60%的人数;(2)从乙组准确回忆个数在MNmax(3)从本次试验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.18.(12分)在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为(为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求与的极坐标方程;(2)设与的交点为、,与的交点为、,且,求值.19.(12分)已知函数,.(1)当时,求的单调区间;(2)若有两个零点,求实数的取值范围.20.(12分)已知正实数列a1,a2,…满足对于每个正整数k,均有,证明:(Ⅰ)a1+a2≥2;(Ⅱ)对于每个正整数n≥2,均有a1+a2+…+an≥n.21.(12分)已知椭圆的左、右焦点分别为,,是椭圆上在第二象限内的一点,且直线的斜率为.(1)求点的坐标;(2)过点作一条斜率为正数的直线与椭圆从左向右依次交于两点,是否存在实数使得?若存在,求出的值;若不存在,请说明理由.22.(10分)已知函数,.(1)当时,求函数图象在点处的切线方程;(2)当时,讨论函数的单调性;(3)是否存在实数,对任意,且有恒成立?若存在,求出的取值范围;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
是奇函数,故;又是增函数,,即则有,解得,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.2、A【解析】试题分析:设,可得,,由的中点为,可得,由在椭圆上,可得,两式相减可得,整理得,故选A.考点:椭圆的几何性质.【方法点晴】本题主要考查了直线与椭圆相交的位置关系,其中解答中涉及到椭圆的标准方程及其简单的几何性质的应用,当与弦的斜率及中点有关时,可以利用“点差法”,同时此类问题注意直线方程与圆锥曲线方程联立,运用判别式与韦达定理解决是解答的关键,着重考查了学生的推理与运算能力,属于中档试题.3、C【解析】分析:把要证的结论进行否定,得到要证的结论的反面,即为所求.详解:由于用反证法证明数学命题时,应先假设命题的否定成立,
命题:“方程ax2+bx+c=0(a≠0)至多有两个解”的否定是:“至少有三个解”,
故选C.点睛:本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.4、D【解析】
画出函数的图像,将的零点问题转化为与有个交点问题来解决,画出图像,根据图像确定的取值范围.【详解】当时,,所以,当时,,所以,当时,,所以.令,易知,所以,将函数有个零点问题,转化为函数图像,与直线有个交点来求解.画出的图像如下图所示,由图可知,而,故.故选D.【点睛】本小题主要考查分段函数图像与性质,考查函数零点问题的求解策略,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.5、B【解析】分析:利用向量的平行四边形法则,向量共线定理即可得出.详解:,,故选:B.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6、C【解析】
转化条件得,再利用即可得解.【详解】由题意可知双曲线的渐近线为,又渐近线与轴所形成的锐角为,,双曲线离心率.故选:C.【点睛】本题考查了双曲线的性质,属于基础题.7、B【解析】
由已知求得样本点的中心的坐标,代入线性回归方程求得,取求得值即可。【详解】解:所以样本的中心坐标为(20,30),代入,得,取,可得,故选:B。【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.8、B【解析】
根据题意,先将四人分成三组,再分别分给三个班级即可求得总安排方法;若甲被安排到A班,则分甲单独一人安排到A班和甲与另外一人一起安排到A班两种情况讨论,即可确定甲被安排到A班的所有情况,即可求解.【详解】将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则将甲、乙、丙、丁名同学分成三组,人数分别为1,1,2;则共有种方法,分配给三个班级的所有方法有种;甲被分到A班,有两种情况:一,甲单独一人分到A班,则剩余两个班级分别为1人和2人,共有种;二,甲和另外一人分到A班,则剩余两个班级各1人,共有种;综上可知,甲被分到班的概率为,故选:B.【点睛】本题考查了排列组合问题的综合应用,分组时注意重复情况的出现,属于中档题.9、B【解析】
结合命题知识对四个选项逐个分析,即可选出正确答案.【详解】对于选项A,“p∧q”为假命题,则p,q两个命题至少一个为假命题,若p,q两个命题都是假命题,则命题“p∨q”是假命题,故选项A错误;对于选项B,“若x2=1,则x=1”的否命题为“若x2对于选项C,命题“∀x∈R,2x>0”的否定是“∃x0∈R,对于选项D,若α=135°,则tanα<0,故“【点睛】本题考查了命题的真假的判断,考查了学生对基础知识的掌握情况.10、B【解析】
分析条形图,第一幅图从性别方面看选物理历史的人数的多少,第二幅图从选物理历史的人数上观察男女人数的多少,【详解】由图2知样本中的男生数量多于女生数量,由图1有物理意愿的学生数量多于有历史意愿的学生数量,样本中的男生更倾向物理,女生也更倾向物理,所以②④正确,故选:B.【点睛】本题考查条形图的认识,只要分清楚条形图中不同的颜色代表的意义即可判别.11、B【解析】
先计算数据的中心点,代入回归方程得到,再代入计算对应值.【详解】数据中心点为代入回归方程当时,y的值为故答案选B【点睛】本题考查了数据的回归方程,计算数据中心点代入方程是解题的关键,意在考查学生的计算能力.12、B【解析】
证明由,可以得到数列单调递增,而由数列单调递增,不一定得到,,从而做出判断,得到答案.【详解】数列是等比数列,首项,且公比,所以数列,且,所以得到数列单调递增;因为数列单调递增,可以得到首项,且公比,也可以得到,且公比.所以“首项,且公比”是“数列单调递增”的充分不必要条件.故选:B.【点睛】本题考查等比数列为递增数列的判定和性质,考查充分不不必要条件,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】
先根据双曲线方程求出焦点坐标,再结合双曲线的定义可得到,进而可求出的值,得到答案.【详解】双曲线,,,,和为双曲线的两个焦点,点在双曲线上,,解或,,或,故答案为:或.【点睛】本题主要考查的是双曲线的定义,属于基础题.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据求解,注意对所求结果进行必要的验证,负数应该舍去,且所求距离应该不小于.14、84.【解析】分析:根据原式右边的展开情况可将原式左边写成:然后根据二项式定理展开求(x-1)3的系数即可.详解:由题可得:,故根据二项式定理可知:故答案为84.点睛:本题考查二项式定理的运用,注意运用变形和展开式的通项公式,考查方程思想和运算能力,属于基础题.15、A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理16、-6【解析】
利用复数代数形式的乘除运算化简,再由虚部为0且实部不为0列式求解.【详解】由题意,,解得.故答案为-6.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)180;(2)见解析;(3)见解析【解析】
(1)利用频率分布直方图能求出1000名被调查的学生中识记停止8小时后40个音节保持率大于等于60%的人数;(2)由题意知X的可能取值为0,1,(3)分别求出甲组学生的平均保持率和乙组学生的平均保持率,由此得到临睡前背英语单词的效果更好.【详解】(1)因为1000×5%=50,由图可知,甲组有4+10+8+4+2+1+1=30(人)所以乙组有20,人,又因为40×60%=24,所以识记停止8小时后,40个音节的保持率大于或等于60%的甲组有1人,乙组有(0.0625+0.0375)×4×20=8(人)所以(1+8)÷5%=180(人),估计1000名被调查的学生中约有180人.(2)由图可知,乙组在12,24范围内的学生有(0.025+0.025+0.075)×4×20=10(人)在20,24范围内的有0.075×4×20=6(人),X的可能取值为0,1,2,3,P(X=0)=P(X=2)=CX0123P1311所以X的分布列为∴E(X)=0×(3)2×4+6×10+10×8+14×4+18×2+22×1+26×1=288甲组学生的平均保持率为288(6×0.0125+10×0.0125+14×0.025+18×0.025+22×0.075+26×0.0625+30×0.0375)×4×20=432,乙组学生的平均保持率为43240×20所以临睡前背英语单词记忆效果更好.【点睛】本题主要考查了频率分布直方图的应用,以及离散型随机变量的分布列与数学期望问题,其中解答认真审题,合理分析,正确求解随机变量X的取值及对应的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.18、(1)的极坐标方程为.的极坐标方程为.(2)【解析】
(1)倾斜角为的直线经过坐标原点,可以直接写出;利用,把曲线的参数方程化为普通方程,然后再利用,把普通方程化成极坐标方程;(2)设,,则,,已知,所以有,运用二角差的正弦公式,可以得到,根据倾斜角的范围,可以求出值.【详解】解:(1)因为经过坐标原点,倾斜角为,故的极坐标方程为.的普通方程为,可得的极坐标方程为.(2)设,,则,.所以.由题设,因为,所以.【点睛】本题考查了已知曲线的参数方程化成极坐标方程.重点考查了极坐标下求两点的距离.19、(1)见解析;(2)【解析】
(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)记t=lnx+x,通过讨论a的范围,结合函数的单调性以及函数的零点的个数判断a的范围即可.【详解】(1)定义域为:,当时,.∴在时为减函数;在时为增函数.(2)记,则在上单增,且.∴.∴在上有两个零点等价于在上有两个零点.①在时,在上单增,且,故无零点;②在时,在上单增,又,,故在上只有一个零点;③在时,由可知在时有唯一的一个极小值.若,,无零点;若,,只有一个零点;若时,,而,由于在时为减函数,可知:时,.从而,∴在和上各有一个零点.综上讨论可知:时有两个零点,即所求的取值范围是.【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.20、(Ⅰ)见解析(Ⅱ)见解析【解析】
(Ⅰ)利用已知条件可得,然后结合基本不等式可证;(Ⅱ)利用数学归纳法进行证明.【详解】证明:(Ⅰ)当k=2时,有,即,,∵,数列为正实数列,由基本不等式2,∴,∴a2+a2≥2.(Ⅱ)用数学归纳法:由(Ⅰ)得n=2时,a2+a2≥2,不等式成立;假设当n=k(k≥2)时,a2+a2+…+ak≥k成立;则当n=k+2时,a2+a2+…+ak+ak+2≥k,要证kk+2,即证2,即为kak≥ak2+k﹣2,即为(ak﹣2)(k﹣2)≥0,∵k≥2,∴k﹣2≥2,当ak﹣2≥0时,a2+a2+…+ak+ak+2≥k+2,∴对于每个正整数n≥2,均有a2+a2+…+an≥n.当0<ak<2时,∵对于每个正整数k,均有,∴,则,a2+a2+…+an+an+2an+2n﹣2+2=n+2.综上,对于每个正整数n≥2,均有a2+a2+…+an≥n.【点睛】本题主要考查数学归纳法在数列问题中的应用,明确数学归纳法的使用步骤是求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外墙竹架采购合同范本
- 场地租赁合同转让协议
- 壁扇销售安装合同范本
- 商业买卖合同协议范本
- 外贸代理购销合同范本
- 土方矿山运输合同范本
- 商铺宿舍转让合同范本
- 夜场设备转让合同范本
- 培训商铺合作合同协议
- 土地转让中介协议合同
- 2024年第二十五届“飞向北京·飞向太空”全国青少年航空航天模型教育竞赛活动竞赛规则
- 绝对值的化简【区一等奖】
- 三对三篮球赛记录表
- GB 4806.13-2023食品安全国家标准食品接触用复合材料及制品
- 云南少数民族
- 列宁:《唯物主义和经验批判主义》(对一种反动哲学的批判)(节选)
- 2023年4月全国自学考试04729大学语文试题
- 脉管系统理论知识考核试题及答案
- 第1单元-输电线路阶段式继电保护
- GB/T 8464-2023铁制、铜制和不锈钢制螺纹连接阀门
- 护理查房胎盘早剥
评论
0/150
提交评论