




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用表示这10个村庄中交通不方便的村庄数,下列概率等于的是()A. B. C. D.2.若函数恰有个零点,则的取值范围为()A. B.C. D.3.的值等于()A.7351 B.7355 C.7513 D.73154.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.,xRB.,xR且x≠0C.,xRD.,xR5.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.6.的内角的对边分别为,,,若的面积为,则A. B. C. D.7.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.8.复数z满足z⋅i=1+2i(iA.第一象限 B.第二象限 C.第三象限 D.第四象限9.设复数满足(为虚数单位),则复数()A. B.C. D.10.设i是虚数单位,则复数i3A.-i B.i C.1 D.-111.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.12.函数的部分图像大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数(是虚数单位)的虚部是_________14.已知函数,若函数恰有两个不同的零点,则实数的取值范围是__________.15.将一边长为的正方形铁片的四角截去四个边长均为的小正方形,然后做成一个无盖的方盒,当等于__________时,方盒的容积最大.16.设为曲线上的点,且曲线在点处切线倾斜角的取值范围为,则点横坐标的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大学“统计初步”课程的教师随机调查了选该课程的一些学生的情况,具体数据如下表:非统计专业统计专业合计男8436120女324880合计11684200(1)能否在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”?(2)用分层抽样方法在上述80名女生中按照“非统计专业”与“统计专业”随机抽取10名,再从抽到的这10名女生中抽取2人,记抽到“统计专业”的人数为,求随机变量的分布列和数学期望.参考公式:,其中;临界值表:0.1500.1000.0500.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)袋中有红、黄、白色球各1个,每次任取1个,有放回地抽三次,求基本事件的个数,写出所有基本事件的全集,并计算下列事件的概率:(1)三次颜色各不相同;(2)三次颜色不全相同;(3)三次取出的球无红色或黄色.19.(12分)甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了件,测量这些零件的质量指标值,得结果如下表:甲企业:分组频数5乙企业:分组频数55(1)已知甲企业的件零件质量指标值的样本方差,该企业生产的零件质量指标值X服从正态分布,其中μ近似为质量指标值的样本平均数(注:求时,同一组中的数据用该组区间的中点值作代表),近似为样本方差,试根据企业的抽样数据,估计所生产的零件中,质量指标值不低于的产品的概率.(精确到)(2)由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过的前提下认为两个企业生产的零件的质量有差异.甲厂乙厂总计优质品非优质品总计附:参考数据:,参考公式:若,则,,;20.(12分)设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=1.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,并求此定值.21.(12分)如图,切于点,直线交于两点,,垂足为.(1)证明:(2)若,,求圆的直径.22.(10分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点,(1)求证:MN//平面PAD(2)求点B到平面AMN的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用古典概型、组合的性质直接求解.【详解】在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用表示这10个村庄中交通不方便的村庄数,则,故A错误;,故B错误;,故C错误;,故D正确;故选:D【点睛】本题考查了古典概型的概率计算公式,组合的性质,属于基础题.2、D【解析】
将问题转化为与恰有个交点;利用导数和二次函数性质可得到的图象,通过数形结合可确定或时满足题意,进而求得结果.【详解】令,则恰有个零点等价于与恰有个交点当时,,则当时,;当时,在上单调递减,在上单调递增当时,在上单调递减,在上单调递增可得图象如下图所示:若与有两个交点,则或又,即当时,恰有个零点本题正确选项:【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将问题转化为平行于轴的直线与曲线的交点个数的问题,利用数形结合的方式找到临界状态,从而得到满足题意的范围.3、D【解析】原式等于,故选D.4、B【解析】
首先判断奇偶性:A,B为偶函数,C为奇函数,D既不是奇函数也不是偶函数,所以排除C、D,对于先减后增,排除A,故选B.考点:函数的奇偶性、单调性.5、B【解析】
在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.6、C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。7、A【解析】
分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8、D【解析】
利用复数的四则运算法则,可求出z=1+2ii【详解】由题意,z=1+2ii=1+2【点睛】本题考查了复数的四则运算,考查了学生对复数知识的理解和掌握,属于基础题.9、A【解析】
利用复数的代数形式的乘除运算化简,求出数复数,即可得到答案.【详解】复数满足,则,所以复数.故选:A.【点睛】本题考查复数的模、共轭复数的概念,考查运算求解能力.10、C【解析】分析:由条件利用两个复数代数形式的除法运算,虚数单位i的幂运算性质,计算求得结果.详解:i3∴复数i3故选C点睛:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.11、D【解析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.12、B【解析】
结合函数的性质,特值及选项进行排除.【详解】当时,,可以排除A,C选项;由于是奇函数,所以关于点对称,所以B对,D错.故选:B.【点睛】本题主要考查函数图象的识别,由解析式选择函数图象时,要注意特值法的使用,侧重考查直观想象的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据复数的结果,直接判断出其虚部是多少.【详解】因为,所以复数的虚部为.故答案为:.【点睛】本题考查复数的虚部的辨别,难度容易.已知复数,则为复数的实部,为复数的虚部.14、【解析】分析:先根据导数研究图像,再根据与图像交点情况确定实数的取值范围.详解:令,所以当时,;当时,;作与图像,由图可得要使函数恰有两个不同的零点,需点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.15、【解析】
先求出方盒容积的表达式,再利用导数根据单调性求最大值.【详解】方盒的容积为:当时函数递减,当时函数递增故答案为【点睛】本题考查了函数的最大值的应用,意在考查学生的应用能力和计算能力.16、【解析】
由切线的倾斜角范围为,得知切线斜率的取值范围是,然后对曲线对应的函数求导得,解不等式可得出点的横坐标的取值范围.【详解】由于曲线在点处的切线的倾斜角的取值范围是,则切线斜率的取值范围是,对函数求导得,令,即,解不等式,得或;解不等式,即,解得.所以,不等式组的解集为.因此,点的横坐标的取值范围是.【点睛】本题考查导数的几何意义,考查切线的斜率与点的横坐标之间的关系,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)能在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”.详见解析(2)见解析【解析】
(1)根据公式计算,与临界值表作比较得到答案.(2)根据分层抽样计算“非统计专业”与“统计专业”人数,计算各种情况的概率,列出分布列,求数学期望.【详解】解:(1)根据表中数据,计算,因为所以能在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”.(2)用分层抽样方法在上述80名女生中按照“非统计专业”与“统计专业”随机抽取10名,那么抽到“非统计专业”4名,抽到“统计专业”6名.,,所以的分布列为012【点睛】本题考查了列联表,分布列,分层抽样,数学期望,属于常考题型.18、(1);(2);(3);【解析】
按球颜色写出所有基本事件;(1)计数三次颜色各不相同的事件数,计算概率;(2)计数三次颜色全相同的事件数,从对立事件角度计算概率;(3)计数三次取出的球无红色或黄色事件数,计算概率;【详解】按抽取的顺序,基本事件全集为:{(红红红),(红红黄),(红红蓝),(红黄红),(红黄黄),(红黄蓝),(红蓝红),(红蓝黄),(红蓝蓝),(黄红红),(黄红黄),(黄红蓝),(黄黄红),(黄黄黄),(黄黄蓝),(黄蓝红),(黄蓝黄),(黄蓝蓝),(蓝红红),(蓝红黄),(蓝红蓝),(蓝黄红),(蓝黄黄),(蓝黄蓝),(蓝蓝红),(蓝蓝黄),(蓝蓝蓝)},共27个.(1)三次颜色各不相同的事件有(红黄蓝),(红蓝黄),(黄红蓝),(黄蓝红),(蓝红黄),(蓝黄红),共6个,概率为;(2)其中颜色全相同的有3个,因此所求概率为;(3)三次取出的球红黄都有的事件有12个,因此三次取出的球无红色或黄色事件有15个,概率为.无红色或黄色事件【点睛】本题考查古典概型概率,解题关键是写出所有基本事件的集合,然后按照要求计数即可,当然有时也可从对立事件的角度考虑.19、(1);(2)列联表见解析,能在犯错误的概率不超过的前提下认为两个企业生产的产品的质量有差异.【解析】
(1)计算甲企业的平均值,得出甲企业产品的质量指标值,计算所求的概率值;(2)根据统计数据填写列联表,计算,对照临界值表得出结论.【详解】(1)依据上述数据,甲厂产品质量指标值的平均值为:,所以,,即甲企业生产的零件质量指标值X服从正态分布,又,则,,,所以,甲企业零件质量指标值不低于的产品的概率为.(2)列联表:甲厂乙厂总计优质品非优质品总计计算∴能在犯错误的概率不超过的前提下认为两个企业
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共基础考试题目及答案
- 工程制图考试题及答案6
- 产品研发流程时间线管理模板
- 项目管理任务分解模板WBS工作分解结构法
- 财务定期报告承诺函(7篇)
- 高级法制员考试题及答案
- 质量控制检查表全面指标覆盖
- 初二北京地理试题及答案
- 2025年宁夏电工考试试题及答案
- 美术理论考试题目及答案
- 建筑施工现场生活住宿区安全检查表
- 万夫一力天下无敌 课件-2023-2024学年高一上学期增强班级凝聚力主题班会
- 调试、试运行与移交管理方案
- GB/T 26655-2011蠕墨铸铁件
- 热镀锌钢管技术标准
- 周三多管理学第03章管理的基本原理
- 基础生态学第4章种群及其基本特征课件
- 虚拟现实与增强现实头戴显示关键技术及应用项目
- 《电力工业企业档案分类规则0大类》(1992年修订版)
- GB∕T 26520-2021 工业氯化钙-行业标准
- 温州医科大学《儿科学》支气管肺炎
评论
0/150
提交评论