四川省达州市名校2023年中考数学最后冲刺模拟试卷含解析_第1页
四川省达州市名校2023年中考数学最后冲刺模拟试卷含解析_第2页
四川省达州市名校2023年中考数学最后冲刺模拟试卷含解析_第3页
四川省达州市名校2023年中考数学最后冲刺模拟试卷含解析_第4页
四川省达州市名校2023年中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.下列各数3.1415926,,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个2.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在()A.点的左边 B.点与点之间 C.点与点之间 D.点的右边3.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C.4 D.64.不等式组中两个不等式的解集,在数轴上表示正确的是A. B.C. D.5.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A.10 B. C. D.156.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2 B.abc<0 C.b+c>3a D.a<b7.某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,208.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.19.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是()A. B. C. D.10.2cos30°的值等于()A.1 B. C. D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.抛物线的顶点坐标是________.12.已知函数是关于的二次函数,则__________.13.因式分解:.14.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.15.如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_____米.16.计算:+=______.三、解答题(共8题,共72分)17.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.18.(8分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.19.(8分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.20.(8分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.21.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?22.(10分)如图,在△ABC中,AB=AC=1,BC=5-1(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.23.(12分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.24.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

根据无理数的定义即可判定求解.【详解】在3.1415926,,,,,中,,3.1415926,是有理数,,,是无理数,共有3个,故选:B.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、C【解析】

根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,

∴点A到原点的距离最大,点C其次,点B最小,

又∵AB=BC,

∴原点O的位置是在点B、C之间且靠近点B的地方.

故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.3、B【解析】

作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴,∵OC是△OAB的中线,∴,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA•BD=×=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.4、B【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B.5、C【解析】

A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.【详解】A,C之间的距离为6,2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,∴m=6,2020﹣2017=3,故点Q与点P的水平距离为3,∵解得k=6,双曲线1+3=4,即点Q离x轴的距离为,∴∵四边形PDEQ的面积是.故选:C.【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.6、D【解析】

根据二次函数的图象与性质逐一判断即可求出答案.【详解】由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正确;∵抛物线开口向上,∴a<0,∵抛物线与y轴的负半轴,∴c<0,∵抛物线对称轴为x=<0,∴b<0,∴abc<0,故B正确;∵当x=1时,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正确;∵当x=﹣1时,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选D.考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.7、D【解析】

先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.8、A【解析】

因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.9、B【解析】

根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故选B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10、C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×=.故选C.点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴抛物线的顶点坐标是(0,-1),故答案为(0,-1).12、1【解析】

根据一元二次方程的定义可得:,且,求解即可得出m的值.【详解】解:由题意得:,且,解得:,且,∴故答案为:1.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”.13、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.14、1【解析】

根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m的图象经过点P(2,3),∴3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.15、42【解析】

延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度.【详解】延长AB交DC于H,作EG⊥AB于G,如图所示:

则GH=DE=15米,EG=DH,

∵梯坎坡度i=1:2.4,

∴BH:CH=1:2.4,

设BH=x米,则CH=2.4x米,

在Rt△BCH中,BC=13米,

由勾股定理得:x2+(2.4x)2=132,

解得:x=5,

∴BH=5米,CH=12米,

∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),

∵∠α=45°,

∴∠EAG=90°-45°=45°,

∴△AEG是等腰直角三角形,

∴AG=EG=32(米),

∴AB=AG+BG=32+10=42(米);

故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.16、1.【解析】

利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=.【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.三、解答题(共8题,共72分)17、(1)见解析;(2)见解析;【解析】

(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.18、(1)见解析;(2)【解析】分析:(1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.详解:(1)证明:如图,连接CO,,∵CD与⊙O相切于点C,∴∠OCD=90°,∵AB是圆O的直径,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:设CD为x,则AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半径是.点睛:此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.19、证明见解析【解析】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.20、,.【解析】

先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式当时原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.21、(1)见解析(2)300(3)2小时【解析】

解:(1)设甲组加工的零件数量y与时间x的函数关系式为.根据题意,得,解得.所以,甲组加工的零件数量y与时间x的函数关系式为:.(2)当时,.因为更换设备后,乙组工作效率是原来的2倍,所以,.解得.(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为.当0≤x≤2时,.解得.舍去.当2<x≤2.8时,.解得.舍去.当2.8<x≤4.8时,.解得.所以,经过3小时恰好装满第1箱.当3<x≤4.8时,.解得.舍去.当4.8<x≤6时..解得.因为5-3=2,所以,再经过2小时恰好装满第2箱.22、(1)AD2=AC•CD.(2)36°.【解析】试题分析:(1)通过计算得到AD2=(2)由AD2=AC⋅CD,得到BC2设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC⋅CD,∴BC2设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论