版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年高考数学真题试卷(新高考I卷)
一、选择题:本题共8小题,每小题5分,共40分。(共8题;共40分)
1.设集合A={x|-2<x<4}.B={2,3,4,5},则AnB=()
A.{2}B.{2,3}C.{3,4,}D.{2,3,4}
B
【考点】交集及其运算
解:根据交集的定义易知ACB是求集合A与集合B的公共元素,即{2,3},
故答案为:B
【分析】根据交集的定义直接求解即可.
2.已知z=2-i,贝山zC+i)=()
A.6-2iB.4-2iC.6+2iD.4+2i
C
【考点】复数的基本概念,复数代数形式的混合运算
解:z(z+i)=(2-i)(2+2i)=4+4i-2i-2i2=6+2i
故答案为:C
【分析】根据复数的运算,结合共舸复数的定义求解即可.
3.已知圆锥的底面半径为V2,其侧面展开图为一个半圆,则该圆锥的母线长为()
A.2B.2V2C.4D.4V2
B
【考点】旋转体(圆柱、圆锥、圆台)
解:根据底面周长等于侧面展开图弧长,设母线为I,底面半径为r,则有2nr=^x2"l,
360
解得I=2r=2企
故答案为:B
【分析】根据底面周长等于侧面展开图弧长,结合圆的周长公式与扇形的弧长公式求解即可.
4.下列区间中,函数f(x)=7sin(-7)单调递增的区间是()
八xO
A.(0,1)B.(;JT)C.(n,y)D.(y,2n)
A
【考点】正弦函数的单调性
解:由一:+2k冗工x—;■W1+2k兀得一孑+2kn<x<^-4-2kn,k£Z,当k=0时,一;,号
是函数的一个增区间,显然(0,号],
故答案为:A
【分析】根据正弦函数的单调性求解即可.
5.已知臼后是椭圆C:1的两个焦点,点M在C上,则|MFI|・|MF2|的最大值为()
94
A.13B.12C.9D.6
C
【考点】基本不等式在最值问题中的应用,椭圆的定义
22
解:由椭圆的定义可知a=9,b=4,|MFi|+|MF2|=2a=6,
则由基本不等式可得|MF1|21s(皿哼型)=9,
当且仅当|MFI|=|MF2|=3时,等号成立.
故答案为:C
【分析】根据椭圆的定义,结合基本不等式求解即可.
...„.sin0(l+sin2n)
6.若tan0=-2,则---------=(z)
sin0+cos°
C
【考点】二倍角的正弦公式,同角三角函数间的基本关系,同角三角函数基本关系的运用
sin0(sin20+2sin0cos0+cos20)_sin0(sin0+cos0)2
解:原式==sin0(sin0+cos。)
sin6+cos。sinO+cos。
_siMe+sin6cos。_tan20+tan0_2
sin20+cos2^tan20+15
故答案为:c
【分析】根据同角三角函数的基本关系,结合二倍角公式求解即可.
7.若过点(a,b)可以作曲线y=e'的两条切线,贝U()
A.eb<aB.ea<bC.0<a<ebD.0<b<ea
D
【考点】极限及其运算,利用导数研究曲线上某点切线方程
解:由题意易知,当X趋近于-8时,切线为x=0,当X趋近于+8时,切线为y=+8,因此切线的交点必位
于第一象限,且在曲线y=e'的下方.
故答案为:D
【分析】利用极限,结合图象求解即可.
8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件"第一次
取出的球的数字是1",乙表示事件“第二次取出的球的数字是2",丙表示事件"两次取出的球的数字之和
是8",丁表示事件"两次取出的球的数字之和是7”,则()
A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立
B
【考点】相互独立事件,相互独立事件的概率乘法公式,古典概型及其概率计算公式
解:设甲乙丙丁事件发生的概率分别为P(A),P(B),P(C),P(D),
则P(4)=P(B)=9「«)=短='PS)=忌=*,
对于A,P(AC)=0;
对于B,PQ4D)=±1
36
对于c,P(BC)=*=9
对于D,P(CD)=O.
若两事件X,Y相互独立,则P(XY)=P(X)P(Y),
故B正确.
故答案为:B
【分析】根据古典概型,以及独立事件的概率求解即可
二、选择题:本题共4小题。每小题5分,共20分。在每小题给出的选项中,有多项符合
题目要求。全部选对的得5分,部分选对的得2分,有选错的得。分。(共4题;共20分)
9.有一组样本数据xi,X2,.,Xn,由这组数据得到新样本数据yi,y2,…,y。,其中环=为+3=1,2,…,n),c为非零
常数,则()
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
C,D
【考点】众数、中位数、平均数,极差、方差与标准差
解:对于A,3=与+"+一+多,当+“+-+即=H+4+-+8“+。=元+©,因为所以完片歹,
nnn/
故A错误;
对于B,若X1,X2,......,Xn的中位数为Xk,因为y=Xi+C,因为CHO,所以丫1,丫2,……M的中位数为
yk=Xk+cHXk,故B错误;
对于c,yi,y2;......,yn的标准差为Sy=;—丫产+(/一川井+…(%—丫产=
+C)—Q+c)]2+[(切+C)—Q+c)]2+…+C)—(7+c)]2
2x22
=;V-y)+(2-y)+•••Un-y)=sx,故c正确;
对于D,设样本数据X1,X2,......,Xn中的最大为Xn,最小为Xi,因为yi=Xi+C,所以y02,...yn中的最大为
yn,最小为yi,
极差为yn-yi=(Xn+C)-(Xl+C)=Xn-Xl,故D正确.
故答案为:CD
【分析】根据平均数,中位数,标准差的定义求解即可.
10.已知。为坐标原点,点Pi(cosa,sina),P2(cosB,-sin0),P3(cos(a邛),sin(a+。)),A(l,0),则()
A-I0P1I=loplB-lAPil=IAPIC'0A0R=0P1OPDOA,OPI=0P2-0P3
A,C
【考点】平面向量数量积的坐标表示、模、夹角,平面向量数量积的运算,两角和与差的余弦公式,两角
和与差的正弦公式
cos22
解:|0P1|=Vcos2a+sin2a=1,\OP2\=7/^+sinj?=1,故A正确;
因为14Pli=J(cosa-+sin2a=72—2cosa,14P21=J(cos0二1尸+siM/?=J2-2cos0,故
B错误;
因为04-0P3=1xcos(a+/?)+0xsin(a+/?)=cos(a+0)‘
0Pr-0P2=cosacos。-sinasin/=cos(a+0),
所以&-0P3=0Pr-0P2
故C正确;
因为04•0P1=1xcosa+0xsina=cosa,
0P2-0P3=(cosg,—sin/?)•(cos(a+0),sin(a+£))=cos/?xcos(a+/?)+(—sin/?)xsin(a+口)=
cos(a+20),
所以D错误
故答案为:AC.
【分析】根据向量的数量积,及向量的求模直接求解即可.
11.已知点P在圆。-5)2+(y-5)2=16上,点A(4,0),B(0,2),贝lj()
A.点P到直线AB的距离小于10
B.点P到直线AB的距离大于2
C.当NPBA最小时,|PB|=3V2
D.当NPBA最大时,|PB|=3V2
A,C,D
【考点】直线的截距式方程,点到直线的距离公式,直线与圆的位置关系
解:直线AB为:3+:=1,即x+2y-4=0,
设点P(5+4cos。,5+4sin0),则点P到直线AB的距离为d=归+宜9隹fin”型=11+4、"n(e+a),则
11-4V5„
djnax=~<1°,dmin
所以A正确B错误;
又圆心。为(5,5),半径为4,则|0B|=,(5-0)2+(5-29=南,
所以当直线PB与圆相切时,NPBA取得最值,此时,\PB\=J\OB\2-r2=V34-16=3A/2
所以CD正确
故答案为:ACD.
【分析】根据直线的截距式,利用点到直线的距离公式,以及直线与圆的位置关系求解即可.
12.在正三棱柱ABC-4"1的中,AB=A4=1,点P满足方=4近+4两,其中入W[0,1],〃
日0,1],则()
A.当入=1时,△ABXP的周长为定值
B.当口=1时,三棱锥P-AiBC的体积为定值
C.当人=:时,有且仅有一个点P,使得力铲1BP
D.当口=:时,有且仅有一个点P,使得&B,平面ABiP
B,D
【考点】棱柱、棱锥、棱台的体积,直线与平面垂直的判定
解:由点P满足~PB=ABC+〃西可知点P在正方形BCCiBi内,
对于A,当入=1时,可知点P在CCi(包括端点)上运动,如下图所示,AABiP中,AB、=遮,AP=
Bj_P=J]+(1-4)2,
因此周长L=AB+AP+B1P不为定值,故A错误.
对于B,当”=1时,可知点P在BiCi(包括端点)上运动,如下图所示,
易知BiCi〃平面AiBC,即点P到平面AiBC的距离处处相等,
△AiBC的面积是定值,所以三棱锥P-AiBC的体积为定值,故B正确;
对于C,当;1=;时,分别取线段BB1,CC1的中点M,N,可知点P在线段DD1(包括端点)上运动,如
下图所示,
很显然若点P与D,Di重合,均满足题意,故C正确;
对于D,当〃=:时,分别取线段BBiCCi的中点D,Di,可知点P在线段DDi(包括端点)上运动,
如下图所示,
A,
7;
B
此时,有且只有点P与点N重合时,满足题意,故D正确.
故答案为:BD
【分析】根据三角形的周长,棱锥的体积的求法,利用特殊点进行判断AB即可,根据线线垂直及线面垂直
的判定定理,利用特殊点进行判断CD即可.
三、选择题:本题共4小题,每小题5分,共20分(共4题;共20分)
13.已知函数f(x)=x\a-2x-2-x)是偶函数,则a=
1
【考点】函数奇偶性的判断,函数奇偶性的性质
解:设g{x}=a-2x-2-x,则题意可知函数g(x)为奇函数,则虱0曰20-2—;=0,故a=l
故答案为:1
【分析】根据函数的奇偶性的判定,结合奇函数的性质求解即可.
14.已知O为坐标原点,抛物线C:丫2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴
上一点,且PQLOP,若|FQ|=6,则C的准线方程为
3
X=-2
【考点】直线的点斜式方程,抛物线的定义
解:由题意可设P&p),则K°P=2,KQP=,
因此直线PQ的方程为:y-p=-i(x-Q
令y=0,得x=|p
因此|FQI=,P-§=2P=6
则p=3
因此抛物线C的准线方程为:x=-l=~l
【分析】根据抛物线的定义及几何性质,结合直线的方程求解即可.
15.函数f(x)=|2x-l|-2lnx的最小值为
1
【考点】利用导数研究函数的单调性,利用导数求闭区间上函数的最值,分段函数的应用
解:①当时,f(x)=2x-l-2lnx,则/'0)=2—:=与卫,
当X>1时,f'(X)>0,当]<X<1时,f'(X)<0,所以f(x)min=f(1)=1;
②当0<xW;时,f(x)=l-2x-2lnx,则/'(x)=-2-5=一汽虫<0,
此时函数f(x)=l-2x-2lnx在(0,1]上为减函数,则f(x)min=f=21n2>1,
综上,f(X)min=l
故答案为:1
【分析】根据分段函数的定义,分别利用导数研究函数的单调性与最值,并比较即可求解
16.某校学生在研究民间剪纸艺术时,发现此纸时经常会沿纸的某条对称轴把纸对折。规格为20dmxl2dm
的长方形纸.对折1次共可以得到lOdmx2dm、20dmx6dm两种规格的图形,它们的面积之和Si=240
dm2,对折2次共可以得5dmxl2dm,lOdmx6dm,20dmx3dm三种规格的图形,它们的面积之和
2
S2=180dm„以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n次,那么
Sk=isk=dm.
5;720—240.*
【考点】数列的求和,类比推理
解:对折3次有2.5x12,6x5,3x10,20x1.5共4种,面积和为3=4x30=120dm2;
2
对折4次有1.25x12,2.5x6,3x5,1.5x10,20x0.75共5种,面积和为S4=5xl5=75dm;
对折n次有n+1中类型,Sn=^(n+1),
因此盒=240.偿+»…+等),转为=240.仔+/+...+/),
上式相减,得转%=240•(1+蠢+表+…+/一霜)=240(|一需)
则翱=240(3—噤)=720-240-
故答案为:5,720-240-
n
【分析】根据类比推理可求对折4次及对折n次的图形种数,运用错位相减法可求£Sk.
k=l
四、解答题:本题共6小题,共70分。(共6题;共70分)
a+1,n为奇数
17.已知数列{an}满足%=1,an+1{n2工
an+2,rt为偶数
(1)记bn=a2n>写出瓦,b2,并求数列{b}的通项公式;
(2)求{斯}的前20项和
(1)2n为偶数,
则a2n+l=a2n+2>a2n+2=a2n+l+1,
aa
2n+2—2n+3,即bn+1=bn+3,且瓦=(^=即+1=2,
.••{,}是以2为首项,3为公差的等差数列,
**•b]=2fb?=59byi=3n—1.
(2)当n为奇数时,an=an+1-1,
・•・{an]的前20项和为
%+。2+…+a20
=(Q1+的■•---1-。19)+(a2+。4------。20)
=[(。2-1)+(a4-1)+…+(。20-1)]+(。2+。4+…+a20)
=2(a2+。4+…+。20)—10・
由(1)可知,
10x9
。2+。4+…+a20=&+历+…+瓦o=2x10H---x3=155.
{an)的前20项和为2x155-10=300.
【考点】等差数列,等差数列的通项公式,数列的求和
【分析】(1)根据等差数列的定义及通项公式即可求解;
(2)运用分组求和法,结合项之间的关系即可求解.
18.某学校组织"一带一路"知识竞赛,有A,B两类问题•每位参加比赛的同学先在两类问题中选择类并从
中随机抽取一个问题问答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一
个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0
分:B类问题中的每个问题回答正确得80分,否则得0分。
己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为06且能正确回答问题的概率与
回答次序无关。
(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列:
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由。
(1)X的取值可能为0,20,100,
尸(X=0)=1-0.8=0.2,
P(X=20)=0.8x(1-0.6)=0.32,
P(X=100)=0.8X0.6=0.48,
■■X的分布列为
X020100
p0.20.320.48
(2)假设先答B类题,得分为Y,
则Y可能为0,80,100,
P(Y=0)=1-0.6=0.4,
P(Y=80)=0.6x(1-0.8)=0.12,
P(Y=100)=0.6X0.8=0.48,
Y的分布列为
Y080100
P0.40.120.48
•••E(y)=0x0.4+80x0.12+100X0.48=57.6,
由(1)可知E(X)=0x0.2+20x0.32+100x0.48=54.4,
E(y)>E(X),
应先答B类题.
【考点】相互独立事件的概率乘法公式,离散型随机变量及其分布列,离散型随机变量的期望与方差
【分析】(I)根据独立事件的概率,并列出X的分布列即可;
(2)根据独立事件的概率,并列出Y的分布列,根据期望公式求得E(X),E(Y)并比较即可判断.
19.记△ABC的内角A,B,C的对边分别为a.,b.,c,已知b2=ac,点D在边AC上,BDsinZABC=asinC.
(1)证明:BD=b:
(2)若AD=2DC.求cos/ABC.
4c_aB
sir148csinC
•・•BDsin^ABC=asinC,
..22.=a⑨
sinCsxnZABC°'
联立①②得啜=",即ac=b•BO,
BDa
vb2=ac,
・•・BD=b.
(2)若4。=2DC,
△ABC中,cosC=1一2一产③,
2-a-b
,a2+(^)2-b2-
△BCD中,cosC=-』一④,
Za3
,:③=④,
(a2+b2-c2)=3[a2+(1)2-b2],
整理得M+一C2=3a2+/3b2,
•"a?-M+c2=0.
vb2=ac,
QO
・•・6a2—Hac+3c2=0,即或。=万。,
若。=♦时,h2=ac=—,
33
222
rn.l/Ar>「a+C-b3c27/仝、
贝UCOS^ABC=-------=2^——2-=2~;=7(舍),
2ac-c仔26
若Q=|C,b2=ac=^c2,
a2+c2-b27
则cos^ABC
2ac12
【考点】正弦定理的应用,余弦定理的应用
【分析】(1)根据正弦定理求解即可;
(2)根据余弦定理,结合方程思想和分类讨论思想求解即可.
AB=AD.O三棱锥A-BCD中.平面ABDJ_平面BCD,AB=AD.O为BD的中点.
(1)证明:OA_LCD:
(2)若△OCD是边长为1的等边三角形.点E在棱AD上.DE=2EA.且二面角E-BC-D的大小为45。,求三棱
锥A-BCD的体积.
(1)•••AB=AD,0为BD中点,
AO1BD,
;4。u面ABD,
面ABD1面BCD且面ABDn面BCD=BD,
4。J.面BCD,
AO1CD.
(2)以。为坐标原点,0D为y轴,。4为z轴,垂直0D且过。的直线为x轴,
设C(y,1,0),0(0,1,0),5(0,-1,0),4(0,0,m),七(0彳,|机),
;EB=(O,_/_刎)>BC-(y<|,0)>
设近=(%1,%*1)为面EBC法向量,
而.苏=_'一|吟=0
{说石=yXt+1%=0
2yl+mz1=0
{%i+V3yt=0'
2
令乃=1,;Zi=—/,x1=V3,
=(-V3,1,-'),
面BCD法向量为0A=(0,0,m),
cos何,两=1^^=1=苧,解得巾=1,
・•・OA=1,
S^ABD=鼻xBDxOA=-x2xl=l,
VA-BCD=^-S^ABD-\XC\=^.
【考点】棱柱、棱锥、棱台的体积,平面与平面垂直的性质,与二面角有关的立体几何综合题,用空间向
量求平面间的夹角
【分析】(1)根据面面垂直的性质定理,结合等腰三角形的性质求解即可;
(2)利用向量法,结合二面角的平面角求得m=l,再根据棱锥的体积公式直接求解即可.
21.在平面直角坐标系xOy中,己知点Fi(-V17,0),F2(V17,0),点M满足|MFt|-|MF2|=2.记M的轨
迹为C.
(1)求C的方程;
(2)设点T在直线x=?上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA||TB|=|T叶|TQ|,
求直线AB的斜率与直线PQ的斜率之和
(1)•••IMF/-|MF2|=2,
•••轨迹C为双曲线右半支,c2=17,2a=2,
・•・a2=1,h2=16,
・,・%2—=1(%>0).
(2)设T(1,n),
设4B:y-n=^(x-|),
y-n=/c1(x-i)
联立{2好,
/一匕=1
22222
.•・(16—k])x+(fci—2krn)x—n+krn-16=0,
-ki2+M-kin+16
/+'2=4"2一]6一.
|771|=Jl+ki2(/一》,
|叫=4+32出一},
••\TA\,|7B|=(1+ki2)(与一i)(x-i)=叱2)(22),
424Ki—IO
设PQ:y-n=k2(x-^),
同理|7P|•|TQ|=弋2)(1+2二,
4—16
v\TA\\TB\=\TP\'\TQ\,
,1+%2_1+&21+17=17
22,22,
kt-16k2-16ki-16k2-16
22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论