




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年广东省河源市普通高校对口单招数学自考测试卷(含答案)班级:________姓名:________考号:________
一、单选题(20题)1.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)
B.y=2sin(2x+π/3)
C.3;=2sin(2x-π/4)
D.3;=2sin(2x-π/3)
2.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0
3.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4
4.设为双曲线的两个焦点,点P在双曲线上,且满足,则的面积是()A.1
B.
C.2
D.
5.在等差数列{an}中,若a3+a17=10,则S19等于()A.65B.75C.85D.95
6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7
7.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.3/4B.5/8C.1/2D.1/4
8.不等式lg(x-1)的定义域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}
9.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
10.已知的值()A.
B.
C.
D.
11.A.10B.5C.2D.12
12.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2
B.f(x)=x2+1
C.f(x)=x3
D.f(x)-2-x
13.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
14.设集合,则MS等于()A.{x|x>}
B.{x|x≥}
C.{x|x<}
D.{x|x≤}
15.下列表示同一函数的是()A.f(x)=x2/x+1与f(x)=x—1
B.f(x)=x0(x≠0)与f(x)=1
C.
D.f(x)=2x+l与f(t)=2t+1
16.若等差数列{an}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.0
17.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
18.A.
B.
C.
19.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)
20.A.
B.
C.
二、填空题(10题)21.sin75°·sin375°=_____.
22.若展开式中各项系数的和为128,则展开式中x2项的系数为_____.
23.
24.如图是一个算法流程图,则输出S的值是____.
25.已知正实数a,b满足a+2b=4,则ab的最大值是____________.
26.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.
27.为椭圆的焦点,P为椭圆上任一点,则的周长是_____.
28.圆x2+y2-4x-6y+4=0的半径是_____.
29.
30.
三、计算题(10题)31.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
32.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
33.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
34.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
35.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
36.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
37.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
38.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
39.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
40.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
四、简答题(10题)41.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
42.已知求tan(a-2b)的值
43.已知函数:,求x的取值范围。
44.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
45.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
46.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
47.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。
48.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
49.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
50.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
五、解答题(10题)51.(1)在给定的直角坐标系中作出函数f(x)的图象;(2)求满足方程f(x)=4的x的值.
52.已知数列{an}是的通项公式为an=en(e为自然对数的底数);(1)证明数列{an}为等比数列;(2)若bn=Inan,求数列{1/bnbn+1}的前n项和Tn.
53.若x∈(0,1),求证:log3X3<log3X<X3.
54.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,在C上;(1)求C的方程;(2)直线L不过原点O且不平行于坐标轴,L与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线L的斜率的乘积为定值.
55.
56.
57.
58.
59.求函数f(x)=x3-3x2-9x+5的单调区间,极值.
60.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
六、证明题(2题)61.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
62.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
参考答案
1.D三角函数图像性质.函数y=2sin(2x+π/6)的周期为π,将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期即π/4个单位,所得函数为y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)
2.D
3.C三角函数的运算∵x=4>1,∴y=㏒24=2
4.A
5.D
6.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,
7.C随机抽样的概率.分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=1/2.故选C
8.B
9.D
10.A
11.A
12.A函数的奇偶性,单调性.因为:y=x2在(-∞,0)上是单调递减的,故y=1/x2在(-∞,0)上是单调递增的,又y=1/x2为偶函数,故A对;y=x2+1在(-∞,0)上是单调递减的,故B错;y=x3为奇函数,故C错;y=2-x为非奇非偶函数,故D错.
13.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3
14.A由于MS表示既属于集合M又属于集合的所有元素的集合,因此MS=。
15.D函数的定义域与对应关系.A、B中定义域不同;C中对应关系不同;D表示同一函数
16.C等差数列的性质.a5=a1+4d=2+4d=6,d=1.
17.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)
18.B
19.A
20.C
21.
,
22.-189,
23.5
24.25程序框图的运算.经过第一次循环得到的结果为S=1,n=3,过第二次循环得到的结果为S=4,72=5,经过第三次循环得到的结果为S=9,n=7,经过第四次循环得到的结果为s=16,n=9经过第五次循环得到的结果为s=25,n=11,此时不满足判断框中的条件输出s的值为25.故答案为25.
25.2基本不等式求最值.由题
26.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5
27.18,
28.3,
29.-2/3
30.{x|0<x<1/3}
31.
32.
33.
34.
35.
36.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
37.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
38.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
39.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
40.
41.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
42.
43.
X>4
44.原式=
45.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
46.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
47.(1)-1<x<1(2)奇函数(3)单调递增函数
48.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
49.(1)(2)
5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东财贸职业学院《医学统计学与流行病学》2023-2024学年第二学期期末试卷
- 商丘职业技术学院《稀有金属冶金学》2023-2024学年第二学期期末试卷
- 苏州卫生职业技术学院《珠宝玉石材料学基础》2023-2024学年第二学期期末试卷
- 长春医学高等专科学校《大数据财务分析》2023-2024学年第二学期期末试卷
- 2025年上海松江区都城企业发展有限公司招聘笔试参考题库附带答案详解
- 打造卓越酒店品牌-品牌形象与市场竞争力的策略
- 室内设计环节核心要素
- 云计算:赋能未来-理解、应用与挑战
- 知识产权保护与创新-知识产权专家演讲
- 未来出行-无人驾驶的契机-交通运输专家的演讲稿
- 《剪映专业版:短视频创作案例教程(全彩慕课版)》 课件 第5章 创作城市宣传片
- 手术分级目录(2023年修订)
- 期中 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 深圳市业主共有资金监督管理办法
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 2024年四川省巴中市中考文科综合试卷(含答案解析)
- 2024年全国职业院校技能大赛中职组(法律实务赛项)考试题库-上(单选题)
- 欠款抵车的协议书范本
- 设备购买合同模板示例
- 抖音火花合同电子版获取教程
- 2023-2024学年人教版八年级下册数学 期末复习试题
评论
0/150
提交评论