北京市房山区名校2023年数学八年级第二学期期末学业水平测试试题含解析_第1页
北京市房山区名校2023年数学八年级第二学期期末学业水平测试试题含解析_第2页
北京市房山区名校2023年数学八年级第二学期期末学业水平测试试题含解析_第3页
北京市房山区名校2023年数学八年级第二学期期末学业水平测试试题含解析_第4页
北京市房山区名校2023年数学八年级第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm2.如图是用程序计算函数值,若输入的值为3,则输出的函数值为()A.2 B.6 C. D.3.现有甲、乙两个合唱队,队员的平均身高都是175cm,方差分别为,,那么两个队中队员的身高较整齐的是()A.甲队 B.乙队 C.两队一样高 D.不能确定4.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B.1 C. D.5.若代数式有意义,则x应满足()A.x=0 B.x≠1 C.x≥﹣5 D.x≥﹣5且x≠16.点P(2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.小明参加短跑训练,2019年2~5月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”.请你小明5年(60个月)后短跑的成绩为()(温馨提示:日前短跑世界记录为9秒58)月份2345成绩(秒)15.615.415.215A.3s B.3.8s C.14.8s D.预测结果不可靠8.一个三角形三边的比为1:2:5,则这个三角形是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形9.某校运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分别为0.8、1.2、3.1、0.6,那么这四位运动员中,发挥较稳定的是()A.甲 B.乙 C.丙 D.丁10.如果,那么等于A.3:2 B.2:5 C.5:3 D.3:511.点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(-4,3)B.(-3,4)C.(4,-3)D.(3,-4)12.如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,连结OE,若AC=12,△OAE的周长为15,则▱ABCD的周长为()A.18 B.27 C.36 D.42二、填空题(每题4分,共24分)13.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是

.14.若,则=____15.某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为80、90、82,若三项成绩分别按3:5:2,则她最后得分的平均分为_____.16.一次函数的图象如图所示,不等式的解集为__________.17.点A(1,3)_____(填“在”、或“不在”)直线y=﹣x+2上.18.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.(1)求,两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.20.(8分)在“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:栽下的各品种树苗棵数统计表植树品种甲种乙种丙种丁种植树棵数150125125若经观测计算得出丙种树苗的成活率为89.6%,请你根据以上信息解答下列问题:(1)这次栽下的四个品种的树苗共棵,乙品种树苗棵;(2)图1中,甲%、乙%,并将图2补充完整;(3)求这次植树活动的树苗成活率.21.(8分)上合组织峰会期间,甲、乙两家商场都将平时以同样价格出售相同的商品进行让利酬宾,其中甲商场所有商品按7折出售,乙商场对一次购物中超过200元后的价格部分打6折.(1)以x(单位:元)表示商品原价,y(单位:元)表示付款金额,分别就两家商场的让利方式写出y与x之间的函数解析式;(2)上合组织峰会期问如何选择这两家商场去购物更省钱?22.(10分)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+1的4分函数为:当x≤4时,y[4]=3x+1;当x>4时,y[4]=-3x-1.(1)如果y=x+1的-1分函数为y[-1],①当x=4时,y[-1]______;当y[-1]=-3时,x=______.②求双曲线y=与y[-1]的图象的交点坐标;(1)如果y=-x+1的0分函数为y[0],正比例函数y=kx(k≠0)与y=-x+1的0分函数y[0]的图象无交点时,直接写出k的取值范围.23.(10分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元(1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?(2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?24.(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?25.(12分)在△ABC中,AH⊥BC于H,D、E、F分别是BC、CA、AB的中点.求证:DE=HF.26.已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________.(2)如图(2)AB∥EF,BC∥DE,∠1与∠2的关系是:____________(3)经过上述证明,我们可以得到一个真命题:如果_________,那么____________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?

参考答案一、选择题(每题4分,共48分)1、C【解析】

连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.【详解】连接、,过作于∵在中,,,∴,∴在中,∴在中,∴,∵的垂直平分线∴同理∵∴∴在中,∴同理∴故选:C.【点睛】本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.2、C【解析】

当时,应选择最后一种运算方法进行计算.【详解】当输入时,此时,即.故选C.【点睛】本题主要考查函数与图象3、B【解析】

根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:∵>,∴身高较整齐的球队是乙队.故选:B.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5、D【解析】

根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】要使代数式有意义,必须有x+5≥0且x-1≠0,即x≥-5且x≠1,故选D.6、D【解析】

根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、D【解析】

由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【详解】解:(1)设y=kx+b依题意得,

解得,

∴y=-0.2x+1.

当x=60时,y=-0.2×60+1=2.

因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,

故选:D.【点睛】本题考查了一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:这个三角形是直角三角形,理由如下:

因为边长之比满足1:2:5,

设三边分别为x、2x、5x,

∵(x)2+(2x)²=(5x)²,

即满足两边的平方和等于第三边的平方,

∴它是直角三角形.

故选B.【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、D【解析】

样本中每个数据与平均数的差的平方的平均数叫做样本方差,方差的值反映一组数据的稳定性和波动情况,方差的值越小说明稳定性好、波动小,故利用比较方差大小即可.【详解】因为,所以最小,故发挥最稳定的是丁.故选D.【点睛】本题主要考查数据的分析.10、B【解析】

根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a:b=c:d,那么(a+b):b=(c+d):d(b、d≠0)】解答并作出选择.【详解】∵=的两个内项是b、2,两外项是a、3,∴,∴根据合比定理,得,即;同理,得=2:5.故选B.【点睛】本题考查比例的性质,熟练掌握比例的基本性质是解题关键.11、D【解析】解:∵点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标为3,纵坐标为﹣4,∴点P的坐标为(3,﹣4).故选D.点睛:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.12、C【解析】

根据三角形的中位线定理可得OE=BC,由△OAE的周长为15可得AE+AO+EO=15,即可得AB+AC+BC=30,再由AC=12可得AB+BC=18,由此即可得▱ABCD的周长.【详解】∵AE=EB,AO=OC,∴OE=BC,∵AE+AO+EO=15,∴2AE+2AO+2OE=30,∴AB+AC+BC=30,∵AC=12,∴AB+BC=18,∴▱ABCD的周长为18×2=1.故选C.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是会灵活运用所学知识解决问题.二、填空题(每题4分,共24分)13、k>0【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限。由题意得,y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,故。14、【解析】

先将变形成|3-a|+(b-2)2=0,根据非负数的性质得到3-a=0,b-2=0,求出a、b的值,然后代入所求代数式即可求出结果.【详解】因为,所以|3-a|+(b-2)2=0,所以3-a=0,b-2=0,所以a=3,b=2,所以=.【点睛】考查了非负数的性质,首先根据非负数的性质确定待定的字母的取值,然后代入所求代数式计算即可解决问题.15、85.4分【解析】

根据加权平均数的概念,注意相对应的权比即可求解.【详解】8030%+9050%+8220%=85.4【点睛】本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.16、【解析】

首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.【详解】解:根据图象可得:解得:所以可得一次函数的直线方程为:所以可得,解得:故答案为【点睛】本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.17、不在.【解析】

把A(1,3)代入y=﹣x+2验证即可.【详解】当x=1时,y=﹣x+2=1,∴点(1,3)不在直线y=﹣x+2上.故答案为:不在.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数图像上点的坐标满足一次函数解析式.18、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.三、解答题(共78分)19、(1)点A的坐标为,点B的坐标为(2)图形见解析(3)【解析】试题分析:令y=0,则x=2;令x=0,则y=1,即可得A,B两点的坐标;(2)连接AB即可得该函数的图象;(3)根据一次函数的性质即可求得结论.试题解析:(1)令,则;令,则.∴点A的坐标为,点B的坐标为.(2)如图:(3)20、(1)500,100;(2)30,20,补图见解析;(3)这次植树活动的树苗成活率为89.8%.

【解析】

(1)根据丙种植树125棵,占总数的25%,即可求得总棵树,然后求得乙种的棵树;

(2)利用百分比的意义即可求得甲和乙所占的百分比,以及成活率;

(3)求得成活的总棵树,然后根据成活率的定义求解.【详解】(1)这次栽下的四个品种的树苗总棵树是:125÷25%=500(棵),则乙品种树苗的棵树是:500−150−125−125=100(棵),故答案为:500,100;

(2)甲所占的百分比是:×100%=30%,乙所占的百分比是:×100%=20%,丙种成活的棵树:125×89.6%=112(棵).故答案为:30,20.

(3)成活的总棵树是:135+85+112+117=449(棵),所以这次植树活动的树苗成活率为=89.8%.【点睛】本题考查统计表、扇形统计图和条形统计图,解题的关键是读懂统计表、扇形统计图和条形统计图中的信息.21、(1)甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.【解析】

(1)根据题意可以分别求出甲乙两商场中y与x的函数关系式;(2)根据(1)中的函数关系式和题意可以解答本题.【详解】.解:(1)由题意可得,甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)令0.7x=0.6x+80,得x=800,∴当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22、(2)①5,-4或2;②(-2,-2);(2)k≥2【解析】

(2)①先写出函数的-2分函数,代入即可,注意,函数值时-3时分两种情况代入;②先写出函数的-2分函数,分两种情况和双曲线解析式联立求解即可;(2)先写出函数的0分函数,画出图象,根据图象即可求得.【详解】解:(2)①y=x+2的-2分函数为:当x≤-2时,y[-2]=x+2;当x>-2时,y[-2]=-x-2.当x=4时,y[-2]=-4-2=-5,当y[-2]=-3时,如果x≤-2,则有,x+2=-3,∴x=-4,如果x>-2,则有,-x-2=-3,∴x=2,故答案为-5,-4或2;②当y=x+2的-2分函数为y[-2],∴当x≤-2时,y[-2]=x+2①,当x>-2时,y[-2]=-x-2②,∵双曲线y=③,联立①③解得,(舍),∴它们的交点坐标为(-2,-2),联立②③时,方程无解,∴双曲线y=与y[-2]的图象的交点坐标(-2,-2);(2)当y=-x+2的0分函数为y[0],∴当x≤0时,y[0]=-x+2,当x>0时,y[0]=x-2,如图,∵正比例函数y=kx(k≠0)与y=-x+2的0分函数y[0]的图象无交点,∴k≥2.【点睛】本题考查的是函数综合题,主要考查了新定义,函数图象的交点坐标的求法,解本题的关键是理解新定义的基础上借助已学知识解决问题.23、(1)收购的5﹣6年期黄连600千克,6年以上期黄连400千克;(2)收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.【解析】

(1)根据题意列方程或方程组进行解答即可,(2)先求出利润与销售量之间的函数关系式和自变量的取值范围,再根据函数的增减性确定何时利润最大.【详解】解:(1)设收购的5﹣6年期黄连x千克,则6年以上期黄连(1000﹣x)千克,由题意得:240x+200(1000﹣x)=224000,解得:x=600,当x=600时,1000﹣x=400,答:收购的5﹣6年期黄连600千克,6年以上期黄连400千克,(2)设收购的5﹣6年期黄连y千克,则6年以上期黄连(1000﹣y)千克,销售利润为z元,由题意得:z=(280﹣240)y+(250﹣200)(1000﹣y)=﹣10y+50000,z随y的增大而减小,又∵y≥3(1000﹣y),∴y≥750,当y=750时,z最小=﹣7500+50000=42500元,答:收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.【点睛】考查一次函数的性质、一元一次方程等知识,正确列方程、求出函数表达式是解决问题的关键.24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】

详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得x+2y=解得x=答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得100a+15010-a解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论