事件的关系和运算 高一下学期数学人教A版(2019)必修第二册_第1页
事件的关系和运算 高一下学期数学人教A版(2019)必修第二册_第2页
事件的关系和运算 高一下学期数学人教A版(2019)必修第二册_第3页
事件的关系和运算 高一下学期数学人教A版(2019)必修第二册_第4页
事件的关系和运算 高一下学期数学人教A版(2019)必修第二册_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.1.2事件的关系和运算第十章概率问题引入从前面的学习中可以看到,我们在一个随机试验中可以定义很多随机事件.这些事件有的简单有的复杂.我们希望从简单事件的概率推算出复杂事件的概率,所以需要研究事件的关系和运算.前面我们利用样本空间的子集表示了事件,那么我们就可以利用集合的知识去研究随机事件,你认为这种研究方法合理吗?新知探索事件的包含关系定义一般地,若事件A发生,则事件B一定发生,我们就称事件B包含事件A(或事件A包含于事件B)含义A发生导致B发生符号表示B⊇A(或A⊆B)图形表示

特殊情形如果事件B包含事件A,事件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B相等,记作A=B新知探索并事件(和事件)定义一般地,事件A与事件B至少有一个发生,这样的一个事件中的样本点或者在事件A中,或者在事件B中,我们称这个事件为事件A与事件B的并事件(或和事件)含义A与B至少一个发生符号表示A∪B(或A+B)图形表示

新知探索交事件(积事件)定义一般地,事件A与事件B同时发生,这样的一个事件中的样本点既在事件A中,也在事件B中,我们称这样的一个事件为事件A与事件B的交事件(或积事件)含义A与B同时发生符号表示A∩B(或AB)图形表示

新知探索互斥(互不相容)定义一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示

新知探索互为对立定义一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为.

含义A与B有且仅有一个发生符号表示A∩B=⌀,A∪B=Ω图形表示

典例精析题型一:事件关系的判断例1某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,用集合的形式分别写出下列事件,并判断下列每对事件的关系:(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有1名男生”与“至少有1名女生”.解

设3名男生用数字1,2,3表示,两名女生用4,5表示,用(x,y)(x∈{1,2,3,},y∈{4,5})表示选出参加比赛的两名同学,则试验的样本空间为Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},(1)设A=“恰有1名男生”,B=“恰有2名男生”,则A={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)},B={(1,2),(1,3),(2,3)},因为A∩B=⌀,所以事件A与事件B互斥.(2)设C=“至少有1名男生”,D=“全是男生”,则C={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)},D={(1,2),(1,3),(2,3)},因为C∩D=D,所以D⊆C.

(3)设E=“至少有1名男生”,F=“全是女生”,则E={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)},F={(4,5)},因为E∪F=Ω,E∩F=⌀,所以E和F互为对立事件.(4)设G=“至少有1名男生”,H=“至少有1名女生”,则G={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)},H={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)},由于G∩H={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)},所以G与H不互斥.典例精析题型二:事件的运算例2在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A={出现1点},B={出现3点或4点},C={出现的点数是奇数},D={出现的点数是偶数}.(1)说明以上4个事件的关系. (2)求A∩B,A∪B,A∪D,B∩D,B∪C.解

在投掷骰子的试验中,根据向上出现的点数有6种基本事件,记作Ai={出现的点数为i}(其中i=1,2,…,6).则A=A1,B=A3∪A4,C=A1∪A3∪A5,D=A2∪A4∪A6.(1)事件A与事件B互斥,但不对立,事件A包含于事件C,事件A与D互斥,但不对立;事件B与C不是互斥事件,事件B与D也不是互斥事件;事件C与D是互斥事件,也是对立事件.

(2)A∩B=⌀,A∪B=A1∪A3∪A4={出现点数1,3或4},A∪D=A1∪A2∪A4∪A6={出现点数1,2,4或6}.B∩D=A4={出现点数4}.B∪C=A1∪A3∪A4∪A5={出现点数1,3,4或5}.跟踪练习1.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”解

A中两个事件能同时发生,故不互斥;同样,B中两个事件也可同时发生,故不互斥;D中两个事件是对立的,故选C.2.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述各对事件中,是对立事件的是

A.①

B.②④

C.③

D.①③解

从1,2,…,9中任取两数,包括一奇一偶、两奇、两偶,共三种互斥事件,所以只有③中的两个事件才是对立事件.故选C.3.向上抛掷两枚质地均匀的硬币,设A={两枚硬币都正面向上},B={两枚硬币都正面向下},C={恰有一枚硬币正面向上},D={至少有一枚硬币正面向上},下列关系不正确的是

A.A⊆D

B.B∩D=⌀C.A∪C=D

D.A∪B=B∪D解

“恰有一枚硬币正面向上”指第一枚硬币正面向上第二枚硬币正面向下或第一枚硬币正面向下第二枚硬币正面向上,“至少有一枚硬币正面向上”包含两种情况:一种是恰有一枚硬币正面向上,一种是两枚硬币都正面向上,所以A∪B≠B∪D.故选D.4.从5张扑克牌(其中2张红桃标号为1和2,3张黑桃标号为3,4和5)中,从中任取2张,设事件A=“2张都是黑桃”,B=“2张花色相同”,C=“2张花色不同”.(1)用集合的形式分别写出试验的样本空间以及上述各事件.(2)求A∩B,B∪C.解

(1)Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},A={(3,4),(3,5),(4,5)},B={

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论