




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各式从左到右,是因式分解的是().A.(y-1)(y+1)=-1 B.C.(x-2)(x-3)=(3-x)(2-x) D.2.介于两个相邻整数之间,这两个整数是()A.2和3 B.3和4 C.4和5 D.5和63.要使分式有意义,x的值不能等于()A.-1 B.0 C.1 D.±14.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.个 B.个 C.个 D.个5.下列平面图形中,不是轴对称图形的是()A. B. C. D.6.若a+c=b,那么方程ax2+bx+c=0(a≠0)必有一根是()A.1B.﹣1C.±1D.07.对于函数y=-x+1,下列结论正确的是()A.它的图象不经过第四象限 B.y的值随x的增大而增大C.它的图象必经过点(0,1) D.当x>2时,y>08.下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于点C.随的增大而减小 D.与轴交于点9.下列式子中,属于最简二次根式的是()A. B. C. D.10.对于一次函数,如果随的增大而减小,那么反比例函数满足()A.当时, B.在每个象限内,随的增大而减小C.图像分布在第一、三象限 D.图像分布在第二、四象限二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,AB=10,AD=6.对角线AC与BD相交于点O,AC⊥BC,则BD的长为____________.12.如图,点E,F分别在x轴,y轴的正半轴上.点在线段EF上,过A作分别交x轴,y轴于点B,C,点P为线段AE上任意一点(P不与A,E重合),连接CP,过E作,交CP的延长线于点G,交CA的延长线于点D.有以下结论①,②,③,④,其中正确的结论是_____.(写出所有正确结论的番号)13.如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.14.如图,反比例函数与正比例函数和的图像分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为___________。15.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.16.一次函数,若y随x的增大而增大,则的取值范围是.17.已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.18.直角三角形的两边长分别为3和5,则第三条边长是________.三、解答题(共66分)19.(10分)某校八(1)班次数学测验(卷面满分分)成绩统计,有的优生,他们的人均分为分,的不及格,他们的人均分为分,其它同学的人均分为分,求全班这次测试成绩的平均分.20.(6分)如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1).(1)写出A,B,C三个顶点的坐标;(2)写出BC的中点P的坐标.21.(6分)某校初中部三个年级共挑选名学生进行跳绳测试,其中七年级人,八年级人,九年级人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.年级平均成绩中位数众数七年级78.5m85八年级807882九年级828584(1)表格中的落在组(填序号);①;②;③;④;⑤;⑥;⑦(2)求这名学生的平均成绩;(3)在本次测试中,八年级与九年级都只有位学生跳下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.22.(8分)已知:如图,四边形ABCD为矩形,AB=10,BC=3,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.(1)当点P在线段AB上运动了t秒时,BP=__________________(用代数式表示);(2)t为何值时,四边形PDEB是平行四边形:(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.23.(8分)在中,对角线交于点,将过点的直线绕点旋转,交射线于点,于点,于点,连接.如图当点与点重合时,请直接写出线段的数量关系;如图,当点在线段上时,与有什么数量关系?请说明你的结论;如图,当点在线段的延长线上时,与有什么数量关系?请说明你的结论.24.(8分)(1)计算:(2)已知:x=+1,求x2﹣2x的值.25.(10分)如图,已知∠BAC=60°,∠B=80°,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.26.(10分)化简求值:,其中x=1.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
解:A、是多项式乘法,不是因式分解,故本选项错误;B、结果不是积的形式,故本选项错误;C、不是对多项式变形,故本选项错误;D、运用完全平方公式分解x2-4x+4=(x-2)2,正确.故选D.2、B【解析】
根据无理数的估算得出的大小范围,即可得答案.【详解】∵9<15<16,∴3<<4,故选B.【点睛】本题考查的是估算无理数的大小,根据题意估算出的大小范围是解答此题的关键.3、C【解析】
根据分式有意义的条件:分母不等于0;【详解】解:要使分式有意义,则,故故选:C【点睛】考查分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0;是解题的关键.4、C【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】120亿个用科学记数法可表示为:个.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.5、A【解析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.6、B【解析】解:根据题意:当x=﹣1时,方程左边=a﹣b+c,而a+c=b,即a﹣b+c=0,所以当x=﹣1时,方程ax2+bx+c=0成立.故x=﹣1是方程的一个根.故选B.7、C【解析】
根据一次函数的图象及性质逐一进行判断即可.【详解】A,函数图象经过一、二、四象限,故该选项错误;B,y的值随x的增大而减小,故该选项错误;C,当时,,故该选项正确;D,当时,,故该选项错误;故选:C.【点睛】本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.8、D【解析】
直接根据一次函数的性质即可解答【详解】A.直线y=2x−5经过第一、三、四象限,错误;B.直线y=2x−5与x轴交于(,0),错误;C.直线y=2x−5,y随x的增大而增大,错误;D.直线y=2x−5与y轴交于(0,−5),正确故选:D.【点睛】此题考查一次函数的性质,解题关键在于掌握其性质9、B【解析】
根据最简二次根式的定义判断即可.【详解】解:A、,不是最简二次根式,故A选项错误;B、是最简二次根式,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误.【点睛】此题考查最简二次根式问题,在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.10、D【解析】
一次函数,y随着x的增大而减小,则m<0,可得出反比例函数在第二、四象限,在每个象限内y随x的增大而增大.【详解】解:∵一次函数,y随着x的增大而减小,∴m<0,∴反比例函数的图象在二、四象限;且在每一象限y随x的增大而增大.∴A、由于m<0,图象在二、四象限,所以x、y异号,错误;B、错误;C、错误;D、正确.故选:D.【点睛】本题考查了一次函数和反比例函数的图象和性质,注意和的图象与式子中的符号之间的关系.二、填空题(每小题3分,共24分)11、4【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.【详解】解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC=CD2-AD2=102-62=8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=12AC=4,
∴OD=AD2+OA2=62【点睛】本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.12、①③④.【解析】
如图,作AM⊥y轴于M,AN⊥OE于N.首先证明四边形AMON是正方形,再证明△AMF≌△ANB(ASA),△AMC≌△ANE(ASA),△AFC≌△ABE(SSS)即可解决问题.【详解】解:如图,作AM⊥y轴于M,AN⊥OE于N.
∵A(4,4),
∴AM=AN=4,
∵∠AMO=∠ONA=90°,
∴四边形ANON是矩形,
∵AM=AN,
∴四边形AMON是正方形,
∴OM=ON=4,
∴∠MAN=90°,
∵CD⊥EF,
∴∠FAC=∠MAN=90°,
∴△AMF≌△ANB(ASA),∴FM=BN,
∴OF+OB=OM+FM+ON-BN=2OM=8,故③正确,
同法可证△AMC≌△ANE(ASA),
∴CM=NE,AC=AE,故①正确;
∵FM=BN,
∴CF=BE,
∵AC=AE,AF=AB,
∴△AFC≌△ABE(SSS),
∴S△ABE-S△BOC=S△AFC-S△BOC=S四边形ABOF=S正方形AMON=16,故④正确,当BE为定值时,点P是动点,故PC≠BE,故②错误,
故答案为①③④.【点睛】本题考查三角形的面积、坐标与图形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13、y=x+9.【解析】
根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.【详解】∵OC=9,,∴BC=15,∵四边形OABC是矩形,∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,∴C(0,9),∵折叠,∴B′C=BC=15,B′D=BD,在Rt△COB′中,OB′==12,∴AB′=15-12=3,设AD=m,则B′D=BD=9-m,Rt△AB′D中,AD2+B′A2=B′D2,即m2+32=(9-m)2,解得m=4,∴D(15,4)设CD所在直线解析式为y=kx+b,把C、D两点坐标分别代入得:,解得:,∴CD所在直线解析式为y=x+9,故答案为:y=x+9.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.14、【解析】
把点A(2,2)代入得k=4得到。可求B()由函数图像可知的解集是:【详解】解:把点A(2,2)代入得:∴k=4∴当y=3时∴∴B()由函数图像可知的解集是:【点睛】本题考查了反比例函数和一次函数的交点问题,掌握求反比例函数解析式,及点的坐标,以及由函数求出不等式的解集.15、10【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.16、.【解析】一次函数的图象有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数的值随x的值增大而减小.由题意得,函数的y随x的增大而增大,.17、-1.【解析】
先利用提公因式法因式分解,然后利用整体代入法求值即可.【详解】解:∵ab2+a2b=ab(a+b),而a+b=5,ab=-6,∴ab2+a2b=-6×5=-1.故答案为:-1.【点睛】此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.18、4或【解析】
由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【详解】∵直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则x==,综上所述,第三边的长为4或,故答案为:4或.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.三、解答题(共66分)19、平均分1【解析】
根据加权平均数的计算方法可计算出这次测验全班成绩的平均数.【详解】解:.故答案为:平均分1.【点睛】本题考查加权平均数的计算方法,正确的计算加权平均数是解题的关键.20、(1)A(1,3),B(-3,3),C(-3,-1);(2)P的坐标(-3,1).【解析】
(1)利用正方形的性质即可解决问题;(2)根据中点坐标公式计算即可.【详解】解:(1)∵正方形ABCD的边长为4,AD∥y轴,D(1,-1).
∴A(1,3),B(-3,3),C(-3,-1),
(2)∵BP=BC=2,B(-3,3),C(-3,-1),
∴BC中点P的坐标(-3,1).点睛:本题考查正方形的性质、坐标与图形的性质、中点坐标公式等知识,解题的关键是熟练掌握点的位置与坐标的关系,记住中点坐标公式,属于基础题.21、(1)④;(2)80;(3)八年级得分的那位同学名次较靠前,理由详见解析.【解析】
(1)根据题意,七年级由40人,则中位数应该在第20和21个人取平均值,即可得到答案;(2)利用加权平均数,即可求出100名学生的平均成绩;(3)由题意,八九年级人数一样,则比较中位数,即可得到答案.【详解】解:根据直方图可知,七年级第20和第21个人都落在;故答案为:④.(2)这名学生的平均成绩为:;(3)八年级得分的那位同学名次较靠前,理由如下:依题意得:八年级和九年级被挑选的学生人数相同,分别把两个年级的成绩按从高到低排列,由两个年级的中位数可知,八年级跳下的学生在该年级排名中上,而八年级跳下的学生在该年级排名中下,八年级得分的那位同学名次较靠前.【点睛】本题考查了众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.22、(1)10-2t;(2)当t=2.5s时,四边形PDEB是平行四边形;(3)t的值为12s或2s或【解析】
(1)求出PA,根据线段和差定义即可解决问题.(2)根据PB=DE,构建方程即可解决问题.(3)①当EP=ED=5时,可得四边形DEPQ,四边形DEP'Q'是菱形,②当DP″=DE【详解】解:(1)∵AB=10,PA=2t,∴BP=10-2t,故答案为10-2t.(2)当PB=DE时,四边形PDEB是平行四边形,∴10-2t=5,∴t=2.5,答:当t=2.5s时,四边形PDEB是平行四边形.(3)存在.①当EP=ED=5时,可得四边形DEPQ,四边形DEP'Q'是菱形,作EH⊥AB于H.在Rt△PEH中,∵PE=5,EH=BC=3,∴PH=5∴AP=1或AP'=9,∴t=12s或92s②当DP″=DE时,可得四边形DE∴t=2,综上所述,满足条件的t的值为12s或2s或【点睛】本题属于四边形即综合题,考查了矩形的性质,菱形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.23、(1);(2),详见解析;(3),详见解析.【解析】
(1)利用平行四边形的性质通过“角角边”证明△CFB≌△AGD,得到CF=AG,即可得证;(2)延长交于点,利用平行线的性质通过“角角边”证明△CFB≌△AGD,得到,再根据直角三角形中斜边上的中线等于斜边的一半即可证得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湿地公园水生植物种植及生态景观设计施工协议
- 高端工业模具技术改造质量跟踪及服务合同
- 土地储备项目补偿款支付及延期协议
- 影视作品兼职配音员合作协议
- 商务办公租赁收益分配合同
- 电视剧组武术替身人员酬劳结算合同
- 儿童抚养费用与父母收入比例调整合同
- 家庭经济状况联动子女抚养费用调整合同
- 海外房产投资风险评估与风险控制咨询协议
- 苏科版2025年中考数学三轮冲刺专题-数学思维及能力含答案
- 2022年江苏泰州市第四人民医院招考聘用高层次人才11人(必考题)模拟卷及答案
- 新加坡sm214th面经44踏水行歌
- 产科输血-ppt课件
- 国家职业技能标准 (2021年版) 公共营养师
- 森林防火PPT课件
- 多合规政策及流程变化对照版
- 钢箱梁的制作及安装方案
- 工程测量毕业设计毕业论文
- 一元二次方程四种解法知识点与练习题(包括十字相乘法)
- 水平四篮球行进间运球教学设计
- 雨露计划职业教育补助学籍证明四川
评论
0/150
提交评论