量子力学英文格里菲斯Chapter2课件_第1页
量子力学英文格里菲斯Chapter2课件_第2页
量子力学英文格里菲斯Chapter2课件_第3页
量子力学英文格里菲斯Chapter2课件_第4页
量子力学英文格里菲斯Chapter2课件_第5页
已阅读5页,还剩133页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Outline1概况1

您的内容打在这里,或者通过复制您的文本后。概况2

您的内容打在这里,或者通过复制您的文本后。概况3

您的内容打在这里,或者通过复制您的文本后。+++整体概况2InChapter1,wehavestudiedalotaboutthe

wavefunction

andhowyouuseitto

calculatevariousquantitiesofinterest.Question:

Howdoyouget(x,t)

inthefirstplace?

Howdoyougoabout

solvingtheSchrödingerequation?3InthisChapter,weassumethatthepotential(orpotentialenergyfunction),V(x,t)=V(x),ofthesystem,isindependentof

time

t

!!!4Nowtheleftsideisafunctionoftalone,andtherightsideisafunctionofxalone.5

Theonlywaythiscanbepossiblybetrueisifbothsidesareinfactconstant,weshallcalltheseparation

constant

E.Then

Separationofvariableshasturneda

partial

differentialequationintotwoordinary

differentialequations(Eq.[2.3]and[2.4]).

6Thefirstequation[2.3]iseasytosolve,thegeneralsolutionofEq.[2.3]is

Thesecondequation[2.4]iscalledthetime-independentSchrödingerequation,wecangoonfurtherwithituntilthepotential

V(x)isspecified.

Therestofthischapterwillbedevotedtosolvingthetime-independentSchrödingerequation[2.4],foravarietyofsimplepotentials.Butbeforewegettothatwewouldliketoconsiderfurtherthequestion:

7What’ssogreataboutseparablesolution

?

可分离的解(即(x,t)=(x)f(t))为何如此重要?Afterall,most

solutionstothe(time-dependent)Schrödingerequationdonottaketheform(x)f(t).Wewillofferthreeanswers—twoofthemphysicalandonemathematical:8NOTE:fornormalizablesolutions,E

mustbereal(seeProblem2.la).

9NothingeverhappensintheStationaryState(x,t)

!

1011Pleasedistinguishtheoperatorwith“hat”(^)toitsdynamicalvariableinEq.[2.12].

12Conclusion:Aseparablesolutionhasthepropertythat

everymeasurementofthetotalenergyiscertaintoreturnthevalueE.

(That’swhywechosethatletterEfortheseparationconstant.)

3.Thegeneralsolutionisa

linearcombinationofseparablesolutions13Nowthe(time-dependent)Schrödingerequation(Eq.1.1)hasthepropertythatany

linearcombination5ofsolutionsisitselfasolution.14Itsohappensthatevery

solutiontothe(time-dependent)Schrödingerequationcanbewritteninthisform—itissimplyamatteroffindingtherightconstants(c1,c2,c3,c4,…)soastofittheinitialconditionsfortheproblemathand.

Oncewehavefoundtheseparablesolutions,then,wecanimmediatelyconstructamuchmoregeneralsolution,oftheform

15You’llseeinthefollowingsectionshowallthisworksoutinpractice,andinChapter3we’llputitintomoreelegantlanguage,butthemainpointisthis:

Onceyou’vesolvedthetime-independentSchrödingerequation,you’reessentiallydone;gettingfromtheretothegeneralsolutionofthetime-dependentSchrödingerequationissimpleandstraightforward.

16Briefsummaryofsection2.1V(x,t)=V(x)boundaryconditions1718ThefirstexampletosolvetheSchrödingerequationistheinfinitesquarewell19Aparticleinthispotentialiscompletelyfree,exceptatthetwoends(x=0andx=a),whereaninfiniteforcepreventsitfromescaping.

Outsidethewell,(x,t)=0(theprobabilityoffindingtheparticlethereiszero).Insidethewell,whereV=0,thetime-independentSchrödingerequation(Equation2.4)reads

20Equation[2.17]isthe(classical)simpleharmonicoscillator

equation;thegeneralsolutionis

Typically,theseconstantsarefixedbytheboundaryconditionsoftheproblem.Whataretheappropriateboundaryconditionsfor(x)?

21Fortheinfinitesquarewell,both(x)andd(x)/dxarecontinuousatthetwoends(x=0

and

x=a)!NOTE:onlythefirstconditionoftheseisappliedsincethepotentialgoestoinfinityhere!Continuityof(x)requiresthat

2223Curiously,theboundaryconditionatx=adoesnotdeterminetheconstantA,butrathertheconstant

k,andhencethepossiblevalues

of

EcanbeobtainedfromEq.[2.17]and[2.22]:Insharpcontrasttotheclassicalcase,aquantumparticleintheinfinitesquarewellcannothavejustanyoldenergy—onlythesespecialallowedvalues.24Aspromised,thetime-independentSchrödingerequationhasdeliveredaninfinitesetofsolutions,oneforeachintegern.ThefirstfewoftheseareplottedinFigure2.2:

25theylookjustlikethestandingwavesonastringoflengtha.

1,whichcarriesthelowestenergy,iscalledthegroundstate;theothers,whoseenergiesincrease

inproportionto

n2,arecalledexcitedstates.

26Thewavefunctions

n(x)havesomeinterestingandimportantproperties:

2728Notethat:

thisargumentdoesnotworkifm=n(canyouspotthepointatwhichitfails?);inthatcasenormalizationtellsusthattheintegralis1.Infact,wecancombineorthogonalityandnormalizationintoasinglestatement

:Wesaythatthe’sareorthonormal.294.Theyarecomplete

Inthesensethatany

otherfunction,f(x),canbeexpressedasalinearcombinationofthemn(x):

“Any”functioncanbecxpandedinthiswayissometimescalledDirichlet’s(狄利克雷)theorem.Theexpansioncoefficients(cn)canbeevaluated—foragivenf(x)-

byamethodcalledFourier’strick(技巧),whichbeautifullyexploitstheorthonormalityof{n(x)}:

MultiplybothsidesofEquation[2.28]bym*(x),andintegrate.

30Thusthemthcoefficientintheexpansionoff(x)

isgivenby

31Thesefourpropertiesareextremelypowerful,andtheyarenotpeculiar(特有的)totheinfinitesquarewell.

Thefirstistruewheneverthepotentialitselfisanevenfunction;

Thesecondisuniversal,regardlessoftheshapeofthepotential.

Orthogonalityisalsoquitegeneral-we’1showyoutheProofinChapter3.

Completenessholdsforallthepotentialsyouarelikelytoencounter,buttheProofstendtobenastyandlaborious;I’mafraidmostphysicistssimplyassumecompletenessandhopeforthebest.

32Thestationarystates(Equation2.6)fortheinfinitesquarewellareevidently

byusingofEq.[2.23]and[2.24]

:Themostgeneralsolutiontothe(time-dependent)SchrödingerequationisalinearcombinationofstationarystatesEq.[2.31]:

33Ingeneral,whent=0,accordingtoEquation[2.32],wecanfit

anyprescribedinitialwavefunction,(x,0),byappropriatechoiceofthecoefficientscn:Thecompletenessofthe(x,0)’s(confirmedinthiscasebyDirichlet’stheorem)guaranteesthatwecanalwaysexpress(x,0)inthisway,andtheirorthonormalitylicensestheuseofFourier’stricktodeterminetheactualcoefficients.Forexample,infinitesquarewell,wehave

34Giventheinitialwavefunction,(x,0)Wefirstcomputetheexpansioncoefficientscn,byusingofEquation[2.33]ThenplugtheseintoEquation[2.32]toobtainΨ(x,t)

Armedwiththewavefunction,weareinapositiontocomputeanydynamicalquantitiesofinterest,usingtheproceduresinChapter1.Andthissameritualappliestoanypotential——theonlythingsthatchangearethefunctionalformofthe’sandtheequationfortheallowedenergies.35Homework:

Example2.1,Example2.2

Problem2.7,Problem2.3736

Theparadigmforaclassicalharmonicoscillatorisamassmattachedtoaspring(弹力)offorceconstantk.ThemotionisgovernedbyHooke’slaw:37Ofcourse,there’snosuchthingasaperfectsimpleharmonicoscillator—ifstretchittoofarthespringisgoingtobreak,andtypicallyHooke’slawfailslongbeforethatpointisreached.

Butpracticallyany

potentialisapproximately

parabolic(抛物线的),intheneighborhoodofalocalminimum(Figure2.3).

3839That’swhythesimpleharmonicoscillator

issoimportant:Virtually(实际上;事实上)

anyoscillatorymotionisapproximatelysimpleharmonic,aslongastheamplitudeissmall.40Intheliteratureyouwillfindtwoentirelydifferentapproachestothisproblem.

The

QuantumproblemistosolvetheSchrödingerequationforthepotentialAswehaveseen,itsufficestosolvethetimeindependentSchrödingerequation:41Thesecondisadiabolically(魔鬼似地)clever(聪明的)

algebraic(代数的)

technique,usingso-calledladder(阶梯)operators.Wewillstudythealgebraicmethodfirstly,becauseitisquickerandsimpler(andmorefun).

Thefirstisastraightforward“bruteforce”(强力)solutiontothedifferentialequation,usingthemethodofpowerseriesexpansion;ithasthevirtue(优点)thatthesamestrategy(策略)canbeappliedtomanyother

potentials(infact,wewilluseitinChapter4totreattheCoulombpotential).

42Theideaistofactortheterminsquarebrackets.Ifthesewerenumberseasy:

Tobeginwith,let’srewriteEquation[2.39]inamoresuggestiveform:

Here,however,it’snotquitesosimple,becauseuandvareoperators,andoperatorsdonot,ingeneral,commute(i.e.uv≠vu).Still,thisdoesinviteustotakealookattheexpressions,fromEq.[2.40],weassume

43Warning:Operators

canbeslipperytoworkwithintheabstract,andyouareboundtomakemistakesunlessyougivethema“testfunction”,f(x),toacton.

Attheendyoucanthrowawaythetestfunction,andyou’llbeleftwithanequationinvolvingtheoperatorsalone.“product”积44Inthepresentcase,wehave

45ByusingofEq.[2.42],theSchrödingerequation[2.40]becomes

Noticethattheorderingofthefactora+andaisimportanthere!46Thesameargument,witha+ontheleft,yields

Thus,Eq.[2.42]

Eq.[2.44],wehave47Now,herecomesthecrucial(关键的)step:

48Here,then,isawonderfulmachineforgrindingoutnewheresolutions,withhigherandlower

energies—ifwecanjustfind

onesolution,togetstared!49Wecalleda±

ladder

operators,becausetheyallowustoclimbupanddowninenergy;a+iscalledtheraisingoperator,andathe

loweringoperator.

The“ladder”ofstatesisillustratedinFigure2.4.

50Butwait!

Whatifweapplytheloweringoperator

arepeatedly?Eventuallywe’regoingtoreachastatewithenergylessthanzero,which(accordingtothegeneraltheoreminProblem2.2)doesnotexist!Atsomepointthemachinemustfail.Howcanthathappen?WeknowthataisanewsolutiontotheSchrödingerequation,butthereisnoguarantee

thatitwillbe

nonmalleable—itmightbezero,oritssquareintegralmightbeinfinite.Problem2.11rulesoutthelatterpossibility.

51Conclusion:Theremustoccura“lowestrung(阶梯)”(let’scallit0)suchthat(seeEq.[2.41])52Todeterminetheenergyofthis

state,weplugitintotheSchrödingerequation(intheformofEquation2.46)

53Withourfootnowsecurelyplantedonthebottomrung(thegroundstateofthequantumoscillator),wesimplyapplytheraisingoperatortogeneratetheexcitedstate:Thismethoddoesnotimmediatelydeterminethenormalizationfactor

An,whichwillbeworkedoutbyyourselfinProblem2.12.54Wewouldn’twanttocalculate50

inthisway,butnevermind:Wehavefoundalltheallowedenergies,andinprinciplewehavedeterminedthestationarystates—therestisjustcomputation.55Homework:

Example2.556WereturnnowtotheSchrödingerequationfortheharmonicoscillator(Equation[2.39]):

Weintroducethedimensionless

variable57OurproblemistosolveEquation[2.56],andintheprocessobtainthe“allowed”valuesofK

(andhenceofEfromEq.[2.57]).

58NotethattheBterminEq.[2.59]isclearlynotnormalizable

(itblowsupas|x|→∞);thephysicallyacceptablesolutions,then,havetheasymptoticform

Thissuggeststhatwe“peeloff”theexponentialpart

59sotheSchrödingerequation(Eq.[2.56])becoms

6061This

recursion(递推)formulaisentirelyequivalenttotheSchrödingerequationitself.

FromEq.[2.65]:

givena0,Eq.[2.65]enablesus(inprinciple)togenerate

a2,a4,a6,…

givena1,Eq.[2.65]generates

a3,a5,a7,

….Letuswrite62Thusequation[2.65]determinesh(ξ)intermsoftwoarbitrary(a0anda1)—whichisjustwhatwewouldexpect,forasecond-orderdifferentialequation.However,notallthesolutionssoobtainedarenormalizable.Foratverylargej,therecursionformula[2.65]becomes(approximately)63Now,ifhgoeslikeexp(ξ2),then(remember?—that’swhatwe’retryingtocalculate)goeslikeexp(ξ2/2)(Equation2.61),whichispreciselytheasymptoticbehaviorwedon’twant.

64Thereisonlyonewaytowiggleoutofthis:Fornormalizablesolutionsthe

powerseriesmustterminate.Theremustoccur

some“highest”j(callitn)suchthattherecursionformulaspitsoutan+2=0.

Conclusion:theseries

hoddwillbetruncatedatsomehighestn;theserieshevenmustbezerofromthestart.

Forphysicallyacceptablesolutions,then,wemusthave

forsomepositiveintegern,whichistosay(referringtoEquation[2.57])thatthe

energy

mustbeoftheform

65Thus,werecover,byacompletelydifferentmethod,thefundamentalquantizationcondition

wefoundalgebraicallyinEquation[2.50].(Eq.[2.68]isobtainedbyputtingK=2n+1intoEq.[65])6667Ingeneral,hn(ξ)willbeapolynomialofdegreeninξ,involvingevenpowersonly:ifnisaneveninteger,andoddpowersonly,ifnisanoddinteger.Apartfromtheoverallfactor(a0ora1)theyaretheso-calledHermitepolynomials,Hn(ξ).ThefirstfewofthemarelistedinTable2.1.

68Bytradition,thearbltrarymultiplicativefactorischosensothatthecoefficientofthehighestpowerofξis2n.Withthisconvention,thenormalizedstationarystatesforthe

harmonicoscillatorareTheyareidentical(ofcourse)totheonesweobtainedalgebraicallyinEquation[2.50].

InFigure2.5awecanplotn(x)forthefirstfewn’s.6970Thequantumoscillatorisstrikingly(醒目地)differentfromitsclassicalcounterpart—notonlyaretheenergiesquantized,butthepositiondistributionshavesomebizarre(怪诞的)features.

Forinstance:

Theprobabilityoffindingtheparticleoutsidetheclassicallyallowedrange(thatis,withxgreaterthantheclassicalamplitudefortheenergyinquestion)isnotzero(seeProblem2.15).Inalloddstatestheprobabilityoffindingtheparticleatthecenterofthepotentialwelliszero.Onlyatrelativelylargendowebegintoseesomeresemblance(相似)totheclassicalcase.

71InFigure2.5b,wehavesuperimosedtheclassicalpositiondistributiononthequantumone(forn=100);ifyousmoothedoutthebumpsinthelatter,thetwowouldfitprettywell.Fig.2.5(b)Graphof|ψ100|2,withtheclassicaldistributionsuperimposed.7273Weturnnexttowhatshouldhavebeenthesimplestcaseofall:thefreeparticle[V(x)=0everywhere].Asyou’llseeinamoment,thefreeparticle

freeparticleisinfactasurprisingly(令人惊讶地)subtle(难以捉摸的)andtricky(难处理的)example.Thetime-independentSchrödingerequationreads74Sofar,it’sthesameasinsidetheinfinitesquarewell(Equation[2.17]),wherethepotentialisalsozero.Thistime,however,weprefertowritethegeneralsolutionofthefreeparticle

inexponentialform(insteadofsinesandcosines)forreasonsthatwillappearinduecourse:Unliketheinfinitesquarewell,therearenoboundaryconditionstorestrictthepossiblevaluesofk(andhenceofE

asshownbyEq.[2.75])

75Thefreeparticlecancarryany(positive)energy.Tackingon(添加)thestandardtimedependence,

InEquation[2.77]:thefirsttermrepresentsawavetravelingtotheright,thesecondtermrepresentsawave(ofthesameenergy)goingtotheleft.Bytheway,sincetheyonlydifferbythesigninfrontofkinEq.[2.77],wemightaswellwrite

76Thespeedofthese

waves(thecoefficientoft

overthecoefficientofx)is

Ontheotherhand,theclassical

speedofafreeparticlewithenergyEisgivenbyE=(1/2)mv2(purekinetic,sinceV=0),so

77Evidentlythequantummechanicalwavefunctiontravelsathalfthespeedoftheparticle.It(themovementofwaveinquantummechanics)issupposed(假想)torepresent(描绘)!

Thereisanevenmoreseriousproblemweneedtoconfrontfirst:Thiswavefunctionisnotnormalizable!For

Note:Thisparadox(悖论)willbediscussedattheendofthissection(readitcarefullybyyourself).78Inthecaseofthefreeparticle,then,theseparablesolutionsdonotrepresentphysicallyrealizablestates.Afreeparticlecannotexistinastationarystate;or,toputitanotherway,thereisnosuchthingasafreeparticlewithadefiniteenergy.Thegeneralsolutiontothetime-dependentSchrödingerequationisstillalinearcombinationofseparablesolutions(onlythistimeit’sanintegraloverthecontinuousvariablek,insteadofasumoverthediscreteindexn):Butthatdoesn’tmeantheseparablesolutionsareofnousetous.Fortheyplayamathematicalrolethatisentirelyindependentoftheirphysical

interpretation.

79Nowthiswavefunctioncanbenormalized.Butitnecessarilycarriesarangeofk’s,andhencearangeofenergiesandspeeds.Wecallitawavepacket.

ThisisaclassicprobleminFourieranalysis;theanswerisprovidedbyPlancherel’stheorem(see

Problem2.20):80F(k)iscalledtheFouriertransformoff(x);

f(x)istheinverseFouriertransformofF(k).(theonlydifferenceisinthesignoftheexponent)Thereis,ofcourse,somerestrictionontheallowablefunctions:Theintegrals

haveto

exist.Forourpurposesthisisguaranteedbythephysicalrequirementthat(x,t)itselfbenormalized.Sothesolutiontothegenericquantumproblem,forthefreeparticle,isequation[2.83],with

8182Supplement8384858687Wehaveencounteredtwoverydifferentkindsofsolutionstothetime-independent

Schrödingerequation:

(1)Fortheinfinitesquarewellandtheharmonicoscillatorthey(i.e.wavefunction)arenormalizable,andlabeledbyadiscreteindexn.

(2)Forthefreepaticletheyarenon-normalizable,andlabeledbyacontinuousvariablek.

88Inbothcasethegeneralsolutiontothetime-dependentSchrödingerequationisalinearcombinationofstationarystates—forthefirsttypethiscombinationtakestheformofasum(overn),whereasfortheseconditisanintegral(overk).

Theformer(i.e.wavefunction)representphysicallyrealizablestatesintheirownright,thelatterdonot.89

theparticleis“stuck”inthepotentialwell—itrocksbackandforthbetweentheturningpoints,butitcannot

escape.Wecallthisa

boundstate.

ClassicalMechanicsAone-dimensionaltimeindependentpotential

V(x)cangiverisetotworatherdifferentkindsofmotion:

(i)IfV(x)riseshigherthantheparticle’stotalenergy

Eoneitherside(Figure2.7a)90thentheparticlecomesinfrom“infinity”,slowsdownorspeedsupundertheinfluenceofthepotential,andreturnstoinfinity.Wecallthisascatteringstate.

(ii)Iftheparticle’stotalenergy

EexceedsV(x)

ononeside(orboth)asshownbyFigure2.7b91

QuantumMechanicsThetwokindsofsolutionstotheSchrödingerequationcorrespondpreciselytoboundandscatteringstates.Thedistinctionisevencleanerinthequantumdomain,becausethephenomenonoftunnelingallowstheparticleto“leak”throughany

finitepotentialbarrier,sotheonlythingthatmattersisthepotentialatinfinity(Figure2,7c):92In“reallife”most

potentialsgotozeroatinfinity,inwhichcasethecriterionsimplifiesevenfurther:

Becausetheinfinitesquarewellandharmonicoscillator

potentialsgotoinfinityasx→±∞,theyadmitboundstatesonly.Becausethefreeparticle

potentialiszeroeverywhere,itonlyallowsscatteringstates.Thus93Inthissection(andthefollowingone)weshallexplorepotentialsthatgiverisetobothkindsofstates.The

Diracdeltafunction,

(x),isdefinedinformallyasfollows:Itisaninfinitelyhigh,infinitesimallynarrowspikeattheorigin,whosearea

is1(Figure2.8).94Technically,it’snotafunctionatall,sinceitisnot

finiteatx=0.Mathematicianscallitageneralizedfunction,ordistribution.Nevertheless,itisanextremelyusefulconstructintheoreticalphysics.95Noticethat(x-a)wouldbeaspikeofarea1atthepointa.Ifyoumultiply(x-a)byanordinaryfunctionf(x),it’sthesameasmultiplyingbyf(a):

becausetheproductiszeroanywayexceptatthepointa.Inparticular,fromEq.[2.94]wehaveThat’sthemostimportantpropertyofthedeltafunction:Undertheintegralsignitservesto“pickout”thevalueoff(x)atthepointa.96Now,let’sconsiderapotentialoftheformwhereαissomeconstant.deltapotentialbarrierdeltapotentialwell97TheSchrödingerequationreads

Thispotentialyieldsbothboundstates(E<0)andscatteringstates(E>0);we’lllookfirstattheboundstates.98(Eisnegative,byassumption,sok

isrealandpositive.)ThegeneralsolutiontoEquation[2.98]isbutthefirsttermblowsupasx→–∞,sowemustchooseA=0:99Intheregionx>0,V(x)isagainzero,andthegeneralsolutionisoftheformFexp(-kx)+Gexp(kx);thistimeit’sthesecondtermthatblowsup(asx→+∞),so

Itremainsonlytostitchthesetwofunctionstogether,usingtheappropriateboundaryconditionsatx=0.Wequotedearlierthestandardboundaryconditionsfor:100ThefirstboundaryconditiontellsusthatF=B,so

combiningEq.[2.101]andEq.[2.102],wehaveThewavefunctiion(x)Eq.[2.104]isplottedbyFigure2.9.101It’sclearfromthegraph(seeFig.2.9)thatthewavefunction

(x)hasakink(扭折)atx=0.Thesecondboundaryconditiontellsus:thedeltafunctionmustdeterminethediscontinuity

inthederivativeof,atx=0.

We’llshowyounowhowthisworks,andasabyproductwe’llseewhyd/dxisordinarilycontinuous.102Theideaistointegratethetime-independentSchrödingerequation,from–εto+ε,

andthentakethelimit

asε→0.

103Ordinary,thelimitontherightisagainzero,andhenced/dxiscontinuous.ButwhenV(x)isinfiniteattheboundary,thatargumentfails.

Inparticular,ifV(x)=–(x),thepropertyofthedeltafunction

Eq.[2.95]yields104105Finally,wenormalize(x):Evidentlythedelta-functionwell,regardlessofit’s“strength”,hasexactlyoneboundstatewhen

E<0:106Whataboutscatteringstates,withE>0?

For

x<0,theSchrödingerequationreads

isrealandpositive.ThegeneralsolutionisAndthistimewecannotruleouteitherterm,sinceneitherofthemblowsup.Similarly,forx>0,107108Havingimposedtheboundaryconditions,weareleftwithtwo

equations(Eqs.[2.115]and[2.117])infourunknowns(A,B,F,andG)—five,ifyoucountk.

109Normalizationwon’thelp—thisisnotanormalizablestate.Perhapswe’dbetterpause,then,andexaminethephysicalsignificanceofthesevariousconstants.Recallthatexp(ikx)

givesrisetoawavefunctionpropagatingtotheright,andexp(-ikx)leadstoawavepropagatingtotheleft.

110Itfollowsthat:A(inEq.[2.113])istheamplitudeofawavecominginfromtheleft,Bistheamplitudeofawavereturningtotheleft,F(inEq.[2.114])istheamplitudeofawavetraveling

offtotheright,Gistheamplitudeofawavecominginfromtheright(seeFig.2.10).111112Inatypicalscatteringexperimentparticlesarefiredinfromonedirection—let’ssay,fromtheleft.Inthatcasetheamplitudeofthewavecominginfromthe

right

willbezero:Aisthentheamplitudeofthe

incidentwave,Bistheamplitudeofthereflectedwave,andFistheamplitudeofthe

transmittedwave.

SolvingEqs.[2.115]and[2.117]forBandF,wefind113Now,theprobabilityoffindingtheparticleataspecifiedlocationisgivenby||2,sotherelative

probabilitythatanincidentparticlewillbereflectedbackisRiscalledthereflectioncoefficient.

Meanwhile,theprobabilityoftransmissionisgivenbythetransmissioncoefficient

114NoticethatRandTarefunctionsof,andhence(Eqs.[2.112]and[2.117])ofE:

FromEq.[2.123],itcanbefoundthatthehighertheenergy,thegreatertheprobabilityoftransmission

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论