




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Outline1概况1
您的内容打在这里,或者通过复制您的文本后。概况2
您的内容打在这里,或者通过复制您的文本后。概况3
您的内容打在这里,或者通过复制您的文本后。+++整体概况2InChapter1,wehavestudiedalotaboutthe
wavefunction
andhowyouuseitto
calculatevariousquantitiesofinterest.Question:
Howdoyouget(x,t)
inthefirstplace?
Howdoyougoabout
solvingtheSchrödingerequation?3InthisChapter,weassumethatthepotential(orpotentialenergyfunction),V(x,t)=V(x),ofthesystem,isindependentof
time
t
!!!4Nowtheleftsideisafunctionoftalone,andtherightsideisafunctionofxalone.5
Theonlywaythiscanbepossiblybetrueisifbothsidesareinfactconstant,weshallcalltheseparation
constant
E.Then
Separationofvariableshasturneda
partial
differentialequationintotwoordinary
differentialequations(Eq.[2.3]and[2.4]).
6Thefirstequation[2.3]iseasytosolve,thegeneralsolutionofEq.[2.3]is
Thesecondequation[2.4]iscalledthetime-independentSchrödingerequation,wecangoonfurtherwithituntilthepotential
V(x)isspecified.
Therestofthischapterwillbedevotedtosolvingthetime-independentSchrödingerequation[2.4],foravarietyofsimplepotentials.Butbeforewegettothatwewouldliketoconsiderfurtherthequestion:
7What’ssogreataboutseparablesolution
?
可分离的解(即(x,t)=(x)f(t))为何如此重要?Afterall,most
solutionstothe(time-dependent)Schrödingerequationdonottaketheform(x)f(t).Wewillofferthreeanswers—twoofthemphysicalandonemathematical:8NOTE:fornormalizablesolutions,E
mustbereal(seeProblem2.la).
9NothingeverhappensintheStationaryState(x,t)
!
1011Pleasedistinguishtheoperatorwith“hat”(^)toitsdynamicalvariableinEq.[2.12].
12Conclusion:Aseparablesolutionhasthepropertythat
everymeasurementofthetotalenergyiscertaintoreturnthevalueE.
(That’swhywechosethatletterEfortheseparationconstant.)
3.Thegeneralsolutionisa
linearcombinationofseparablesolutions13Nowthe(time-dependent)Schrödingerequation(Eq.1.1)hasthepropertythatany
linearcombination5ofsolutionsisitselfasolution.14Itsohappensthatevery
solutiontothe(time-dependent)Schrödingerequationcanbewritteninthisform—itissimplyamatteroffindingtherightconstants(c1,c2,c3,c4,…)soastofittheinitialconditionsfortheproblemathand.
Oncewehavefoundtheseparablesolutions,then,wecanimmediatelyconstructamuchmoregeneralsolution,oftheform
15You’llseeinthefollowingsectionshowallthisworksoutinpractice,andinChapter3we’llputitintomoreelegantlanguage,butthemainpointisthis:
Onceyou’vesolvedthetime-independentSchrödingerequation,you’reessentiallydone;gettingfromtheretothegeneralsolutionofthetime-dependentSchrödingerequationissimpleandstraightforward.
16Briefsummaryofsection2.1V(x,t)=V(x)boundaryconditions1718ThefirstexampletosolvetheSchrödingerequationistheinfinitesquarewell19Aparticleinthispotentialiscompletelyfree,exceptatthetwoends(x=0andx=a),whereaninfiniteforcepreventsitfromescaping.
Outsidethewell,(x,t)=0(theprobabilityoffindingtheparticlethereiszero).Insidethewell,whereV=0,thetime-independentSchrödingerequation(Equation2.4)reads
20Equation[2.17]isthe(classical)simpleharmonicoscillator
equation;thegeneralsolutionis
Typically,theseconstantsarefixedbytheboundaryconditionsoftheproblem.Whataretheappropriateboundaryconditionsfor(x)?
21Fortheinfinitesquarewell,both(x)andd(x)/dxarecontinuousatthetwoends(x=0
and
x=a)!NOTE:onlythefirstconditionoftheseisappliedsincethepotentialgoestoinfinityhere!Continuityof(x)requiresthat
2223Curiously,theboundaryconditionatx=adoesnotdeterminetheconstantA,butrathertheconstant
k,andhencethepossiblevalues
of
EcanbeobtainedfromEq.[2.17]and[2.22]:Insharpcontrasttotheclassicalcase,aquantumparticleintheinfinitesquarewellcannothavejustanyoldenergy—onlythesespecialallowedvalues.24Aspromised,thetime-independentSchrödingerequationhasdeliveredaninfinitesetofsolutions,oneforeachintegern.ThefirstfewoftheseareplottedinFigure2.2:
25theylookjustlikethestandingwavesonastringoflengtha.
1,whichcarriesthelowestenergy,iscalledthegroundstate;theothers,whoseenergiesincrease
inproportionto
n2,arecalledexcitedstates.
26Thewavefunctions
n(x)havesomeinterestingandimportantproperties:
2728Notethat:
thisargumentdoesnotworkifm=n(canyouspotthepointatwhichitfails?);inthatcasenormalizationtellsusthattheintegralis1.Infact,wecancombineorthogonalityandnormalizationintoasinglestatement
:Wesaythatthe’sareorthonormal.294.Theyarecomplete
Inthesensethatany
otherfunction,f(x),canbeexpressedasalinearcombinationofthemn(x):
“Any”functioncanbecxpandedinthiswayissometimescalledDirichlet’s(狄利克雷)theorem.Theexpansioncoefficients(cn)canbeevaluated—foragivenf(x)-
byamethodcalledFourier’strick(技巧),whichbeautifullyexploitstheorthonormalityof{n(x)}:
MultiplybothsidesofEquation[2.28]bym*(x),andintegrate.
30Thusthemthcoefficientintheexpansionoff(x)
isgivenby
31Thesefourpropertiesareextremelypowerful,andtheyarenotpeculiar(特有的)totheinfinitesquarewell.
Thefirstistruewheneverthepotentialitselfisanevenfunction;
Thesecondisuniversal,regardlessoftheshapeofthepotential.
Orthogonalityisalsoquitegeneral-we’1showyoutheProofinChapter3.
Completenessholdsforallthepotentialsyouarelikelytoencounter,buttheProofstendtobenastyandlaborious;I’mafraidmostphysicistssimplyassumecompletenessandhopeforthebest.
32Thestationarystates(Equation2.6)fortheinfinitesquarewellareevidently
byusingofEq.[2.23]and[2.24]
:Themostgeneralsolutiontothe(time-dependent)SchrödingerequationisalinearcombinationofstationarystatesEq.[2.31]:
33Ingeneral,whent=0,accordingtoEquation[2.32],wecanfit
anyprescribedinitialwavefunction,(x,0),byappropriatechoiceofthecoefficientscn:Thecompletenessofthe(x,0)’s(confirmedinthiscasebyDirichlet’stheorem)guaranteesthatwecanalwaysexpress(x,0)inthisway,andtheirorthonormalitylicensestheuseofFourier’stricktodeterminetheactualcoefficients.Forexample,infinitesquarewell,wehave
34Giventheinitialwavefunction,(x,0)Wefirstcomputetheexpansioncoefficientscn,byusingofEquation[2.33]ThenplugtheseintoEquation[2.32]toobtainΨ(x,t)
Armedwiththewavefunction,weareinapositiontocomputeanydynamicalquantitiesofinterest,usingtheproceduresinChapter1.Andthissameritualappliestoanypotential——theonlythingsthatchangearethefunctionalformofthe’sandtheequationfortheallowedenergies.35Homework:
Example2.1,Example2.2
Problem2.7,Problem2.3736
Theparadigmforaclassicalharmonicoscillatorisamassmattachedtoaspring(弹力)offorceconstantk.ThemotionisgovernedbyHooke’slaw:37Ofcourse,there’snosuchthingasaperfectsimpleharmonicoscillator—ifstretchittoofarthespringisgoingtobreak,andtypicallyHooke’slawfailslongbeforethatpointisreached.
Butpracticallyany
potentialisapproximately
parabolic(抛物线的),intheneighborhoodofalocalminimum(Figure2.3).
3839That’swhythesimpleharmonicoscillator
issoimportant:Virtually(实际上;事实上)
anyoscillatorymotionisapproximatelysimpleharmonic,aslongastheamplitudeissmall.40Intheliteratureyouwillfindtwoentirelydifferentapproachestothisproblem.
The
QuantumproblemistosolvetheSchrödingerequationforthepotentialAswehaveseen,itsufficestosolvethetimeindependentSchrödingerequation:41Thesecondisadiabolically(魔鬼似地)clever(聪明的)
algebraic(代数的)
technique,usingso-calledladder(阶梯)operators.Wewillstudythealgebraicmethodfirstly,becauseitisquickerandsimpler(andmorefun).
Thefirstisastraightforward“bruteforce”(强力)solutiontothedifferentialequation,usingthemethodofpowerseriesexpansion;ithasthevirtue(优点)thatthesamestrategy(策略)canbeappliedtomanyother
potentials(infact,wewilluseitinChapter4totreattheCoulombpotential).
42Theideaistofactortheterminsquarebrackets.Ifthesewerenumberseasy:
Tobeginwith,let’srewriteEquation[2.39]inamoresuggestiveform:
Here,however,it’snotquitesosimple,becauseuandvareoperators,andoperatorsdonot,ingeneral,commute(i.e.uv≠vu).Still,thisdoesinviteustotakealookattheexpressions,fromEq.[2.40],weassume
43Warning:Operators
canbeslipperytoworkwithintheabstract,andyouareboundtomakemistakesunlessyougivethema“testfunction”,f(x),toacton.
Attheendyoucanthrowawaythetestfunction,andyou’llbeleftwithanequationinvolvingtheoperatorsalone.“product”积44Inthepresentcase,wehave
45ByusingofEq.[2.42],theSchrödingerequation[2.40]becomes
Noticethattheorderingofthefactora+andaisimportanthere!46Thesameargument,witha+ontheleft,yields
Thus,Eq.[2.42]
–
Eq.[2.44],wehave47Now,herecomesthecrucial(关键的)step:
48Here,then,isawonderfulmachineforgrindingoutnewheresolutions,withhigherandlower
energies—ifwecanjustfind
onesolution,togetstared!49Wecalleda±
ladder
operators,becausetheyallowustoclimbupanddowninenergy;a+iscalledtheraisingoperator,andathe
loweringoperator.
The“ladder”ofstatesisillustratedinFigure2.4.
50Butwait!
Whatifweapplytheloweringoperator
arepeatedly?Eventuallywe’regoingtoreachastatewithenergylessthanzero,which(accordingtothegeneraltheoreminProblem2.2)doesnotexist!Atsomepointthemachinemustfail.Howcanthathappen?WeknowthataisanewsolutiontotheSchrödingerequation,butthereisnoguarantee
thatitwillbe
nonmalleable—itmightbezero,oritssquareintegralmightbeinfinite.Problem2.11rulesoutthelatterpossibility.
51Conclusion:Theremustoccura“lowestrung(阶梯)”(let’scallit0)suchthat(seeEq.[2.41])52Todeterminetheenergyofthis
state,weplugitintotheSchrödingerequation(intheformofEquation2.46)
53Withourfootnowsecurelyplantedonthebottomrung(thegroundstateofthequantumoscillator),wesimplyapplytheraisingoperatortogeneratetheexcitedstate:Thismethoddoesnotimmediatelydeterminethenormalizationfactor
An,whichwillbeworkedoutbyyourselfinProblem2.12.54Wewouldn’twanttocalculate50
inthisway,butnevermind:Wehavefoundalltheallowedenergies,andinprinciplewehavedeterminedthestationarystates—therestisjustcomputation.55Homework:
Example2.556WereturnnowtotheSchrödingerequationfortheharmonicoscillator(Equation[2.39]):
Weintroducethedimensionless
variable57OurproblemistosolveEquation[2.56],andintheprocessobtainthe“allowed”valuesofK
(andhenceofEfromEq.[2.57]).
58NotethattheBterminEq.[2.59]isclearlynotnormalizable
(itblowsupas|x|→∞);thephysicallyacceptablesolutions,then,havetheasymptoticform
Thissuggeststhatwe“peeloff”theexponentialpart
59sotheSchrödingerequation(Eq.[2.56])becoms
6061This
recursion(递推)formulaisentirelyequivalenttotheSchrödingerequationitself.
FromEq.[2.65]:
givena0,Eq.[2.65]enablesus(inprinciple)togenerate
a2,a4,a6,…
givena1,Eq.[2.65]generates
a3,a5,a7,
….Letuswrite62Thusequation[2.65]determinesh(ξ)intermsoftwoarbitrary(a0anda1)—whichisjustwhatwewouldexpect,forasecond-orderdifferentialequation.However,notallthesolutionssoobtainedarenormalizable.Foratverylargej,therecursionformula[2.65]becomes(approximately)63Now,ifhgoeslikeexp(ξ2),then(remember?—that’swhatwe’retryingtocalculate)goeslikeexp(ξ2/2)(Equation2.61),whichispreciselytheasymptoticbehaviorwedon’twant.
64Thereisonlyonewaytowiggleoutofthis:Fornormalizablesolutionsthe
powerseriesmustterminate.Theremustoccur
some“highest”j(callitn)suchthattherecursionformulaspitsoutan+2=0.
Conclusion:theseries
hoddwillbetruncatedatsomehighestn;theserieshevenmustbezerofromthestart.
Forphysicallyacceptablesolutions,then,wemusthave
forsomepositiveintegern,whichistosay(referringtoEquation[2.57])thatthe
energy
mustbeoftheform
65Thus,werecover,byacompletelydifferentmethod,thefundamentalquantizationcondition
wefoundalgebraicallyinEquation[2.50].(Eq.[2.68]isobtainedbyputtingK=2n+1intoEq.[65])6667Ingeneral,hn(ξ)willbeapolynomialofdegreeninξ,involvingevenpowersonly:ifnisaneveninteger,andoddpowersonly,ifnisanoddinteger.Apartfromtheoverallfactor(a0ora1)theyaretheso-calledHermitepolynomials,Hn(ξ).ThefirstfewofthemarelistedinTable2.1.
68Bytradition,thearbltrarymultiplicativefactorischosensothatthecoefficientofthehighestpowerofξis2n.Withthisconvention,thenormalizedstationarystatesforthe
harmonicoscillatorareTheyareidentical(ofcourse)totheonesweobtainedalgebraicallyinEquation[2.50].
InFigure2.5awecanplotn(x)forthefirstfewn’s.6970Thequantumoscillatorisstrikingly(醒目地)differentfromitsclassicalcounterpart—notonlyaretheenergiesquantized,butthepositiondistributionshavesomebizarre(怪诞的)features.
Forinstance:
Theprobabilityoffindingtheparticleoutsidetheclassicallyallowedrange(thatis,withxgreaterthantheclassicalamplitudefortheenergyinquestion)isnotzero(seeProblem2.15).Inalloddstatestheprobabilityoffindingtheparticleatthecenterofthepotentialwelliszero.Onlyatrelativelylargendowebegintoseesomeresemblance(相似)totheclassicalcase.
71InFigure2.5b,wehavesuperimosedtheclassicalpositiondistributiononthequantumone(forn=100);ifyousmoothedoutthebumpsinthelatter,thetwowouldfitprettywell.Fig.2.5(b)Graphof|ψ100|2,withtheclassicaldistributionsuperimposed.7273Weturnnexttowhatshouldhavebeenthesimplestcaseofall:thefreeparticle[V(x)=0everywhere].Asyou’llseeinamoment,thefreeparticle
freeparticleisinfactasurprisingly(令人惊讶地)subtle(难以捉摸的)andtricky(难处理的)example.Thetime-independentSchrödingerequationreads74Sofar,it’sthesameasinsidetheinfinitesquarewell(Equation[2.17]),wherethepotentialisalsozero.Thistime,however,weprefertowritethegeneralsolutionofthefreeparticle
inexponentialform(insteadofsinesandcosines)forreasonsthatwillappearinduecourse:Unliketheinfinitesquarewell,therearenoboundaryconditionstorestrictthepossiblevaluesofk(andhenceofE
asshownbyEq.[2.75])
75Thefreeparticlecancarryany(positive)energy.Tackingon(添加)thestandardtimedependence,
InEquation[2.77]:thefirsttermrepresentsawavetravelingtotheright,thesecondtermrepresentsawave(ofthesameenergy)goingtotheleft.Bytheway,sincetheyonlydifferbythesigninfrontofkinEq.[2.77],wemightaswellwrite
76Thespeedofthese
waves(thecoefficientoft
overthecoefficientofx)is
Ontheotherhand,theclassical
speedofafreeparticlewithenergyEisgivenbyE=(1/2)mv2(purekinetic,sinceV=0),so
77Evidentlythequantummechanicalwavefunctiontravelsathalfthespeedoftheparticle.It(themovementofwaveinquantummechanics)issupposed(假想)torepresent(描绘)!
Thereisanevenmoreseriousproblemweneedtoconfrontfirst:Thiswavefunctionisnotnormalizable!For
Note:Thisparadox(悖论)willbediscussedattheendofthissection(readitcarefullybyyourself).78Inthecaseofthefreeparticle,then,theseparablesolutionsdonotrepresentphysicallyrealizablestates.Afreeparticlecannotexistinastationarystate;or,toputitanotherway,thereisnosuchthingasafreeparticlewithadefiniteenergy.Thegeneralsolutiontothetime-dependentSchrödingerequationisstillalinearcombinationofseparablesolutions(onlythistimeit’sanintegraloverthecontinuousvariablek,insteadofasumoverthediscreteindexn):Butthatdoesn’tmeantheseparablesolutionsareofnousetous.Fortheyplayamathematicalrolethatisentirelyindependentoftheirphysical
interpretation.
79Nowthiswavefunctioncanbenormalized.Butitnecessarilycarriesarangeofk’s,andhencearangeofenergiesandspeeds.Wecallitawavepacket.
ThisisaclassicprobleminFourieranalysis;theanswerisprovidedbyPlancherel’stheorem(see
Problem2.20):80F(k)iscalledtheFouriertransformoff(x);
f(x)istheinverseFouriertransformofF(k).(theonlydifferenceisinthesignoftheexponent)Thereis,ofcourse,somerestrictionontheallowablefunctions:Theintegrals
haveto
exist.Forourpurposesthisisguaranteedbythephysicalrequirementthat(x,t)itselfbenormalized.Sothesolutiontothegenericquantumproblem,forthefreeparticle,isequation[2.83],with
8182Supplement8384858687Wehaveencounteredtwoverydifferentkindsofsolutionstothetime-independent
Schrödingerequation:
(1)Fortheinfinitesquarewellandtheharmonicoscillatorthey(i.e.wavefunction)arenormalizable,andlabeledbyadiscreteindexn.
(2)Forthefreepaticletheyarenon-normalizable,andlabeledbyacontinuousvariablek.
88Inbothcasethegeneralsolutiontothetime-dependentSchrödingerequationisalinearcombinationofstationarystates—forthefirsttypethiscombinationtakestheformofasum(overn),whereasfortheseconditisanintegral(overk).
Theformer(i.e.wavefunction)representphysicallyrealizablestatesintheirownright,thelatterdonot.89
theparticleis“stuck”inthepotentialwell—itrocksbackandforthbetweentheturningpoints,butitcannot
escape.Wecallthisa
boundstate.
ClassicalMechanicsAone-dimensionaltimeindependentpotential
V(x)cangiverisetotworatherdifferentkindsofmotion:
(i)IfV(x)riseshigherthantheparticle’stotalenergy
Eoneitherside(Figure2.7a)90thentheparticlecomesinfrom“infinity”,slowsdownorspeedsupundertheinfluenceofthepotential,andreturnstoinfinity.Wecallthisascatteringstate.
(ii)Iftheparticle’stotalenergy
EexceedsV(x)
ononeside(orboth)asshownbyFigure2.7b91
QuantumMechanicsThetwokindsofsolutionstotheSchrödingerequationcorrespondpreciselytoboundandscatteringstates.Thedistinctionisevencleanerinthequantumdomain,becausethephenomenonoftunnelingallowstheparticleto“leak”throughany
finitepotentialbarrier,sotheonlythingthatmattersisthepotentialatinfinity(Figure2,7c):92In“reallife”most
potentialsgotozeroatinfinity,inwhichcasethecriterionsimplifiesevenfurther:
Becausetheinfinitesquarewellandharmonicoscillator
potentialsgotoinfinityasx→±∞,theyadmitboundstatesonly.Becausethefreeparticle
potentialiszeroeverywhere,itonlyallowsscatteringstates.Thus93Inthissection(andthefollowingone)weshallexplorepotentialsthatgiverisetobothkindsofstates.The
Diracdeltafunction,
(x),isdefinedinformallyasfollows:Itisaninfinitelyhigh,infinitesimallynarrowspikeattheorigin,whosearea
is1(Figure2.8).94Technically,it’snotafunctionatall,sinceitisnot
finiteatx=0.Mathematicianscallitageneralizedfunction,ordistribution.Nevertheless,itisanextremelyusefulconstructintheoreticalphysics.95Noticethat(x-a)wouldbeaspikeofarea1atthepointa.Ifyoumultiply(x-a)byanordinaryfunctionf(x),it’sthesameasmultiplyingbyf(a):
becausetheproductiszeroanywayexceptatthepointa.Inparticular,fromEq.[2.94]wehaveThat’sthemostimportantpropertyofthedeltafunction:Undertheintegralsignitservesto“pickout”thevalueoff(x)atthepointa.96Now,let’sconsiderapotentialoftheformwhereαissomeconstant.deltapotentialbarrierdeltapotentialwell97TheSchrödingerequationreads
Thispotentialyieldsbothboundstates(E<0)andscatteringstates(E>0);we’lllookfirstattheboundstates.98(Eisnegative,byassumption,sok
isrealandpositive.)ThegeneralsolutiontoEquation[2.98]isbutthefirsttermblowsupasx→–∞,sowemustchooseA=0:99Intheregionx>0,V(x)isagainzero,andthegeneralsolutionisoftheformFexp(-kx)+Gexp(kx);thistimeit’sthesecondtermthatblowsup(asx→+∞),so
Itremainsonlytostitchthesetwofunctionstogether,usingtheappropriateboundaryconditionsatx=0.Wequotedearlierthestandardboundaryconditionsfor:100ThefirstboundaryconditiontellsusthatF=B,so
combiningEq.[2.101]andEq.[2.102],wehaveThewavefunctiion(x)Eq.[2.104]isplottedbyFigure2.9.101It’sclearfromthegraph(seeFig.2.9)thatthewavefunction
(x)hasakink(扭折)atx=0.Thesecondboundaryconditiontellsus:thedeltafunctionmustdeterminethediscontinuity
inthederivativeof,atx=0.
We’llshowyounowhowthisworks,andasabyproductwe’llseewhyd/dxisordinarilycontinuous.102Theideaistointegratethetime-independentSchrödingerequation,from–εto+ε,
andthentakethelimit
asε→0.
103Ordinary,thelimitontherightisagainzero,andhenced/dxiscontinuous.ButwhenV(x)isinfiniteattheboundary,thatargumentfails.
Inparticular,ifV(x)=–(x),thepropertyofthedeltafunction
Eq.[2.95]yields104105Finally,wenormalize(x):Evidentlythedelta-functionwell,regardlessofit’s“strength”,hasexactlyoneboundstatewhen
E<0:106Whataboutscatteringstates,withE>0?
For
x<0,theSchrödingerequationreads
isrealandpositive.ThegeneralsolutionisAndthistimewecannotruleouteitherterm,sinceneitherofthemblowsup.Similarly,forx>0,107108Havingimposedtheboundaryconditions,weareleftwithtwo
equations(Eqs.[2.115]and[2.117])infourunknowns(A,B,F,andG)—five,ifyoucountk.
109Normalizationwon’thelp—thisisnotanormalizablestate.Perhapswe’dbetterpause,then,andexaminethephysicalsignificanceofthesevariousconstants.Recallthatexp(ikx)
givesrisetoawavefunctionpropagatingtotheright,andexp(-ikx)leadstoawavepropagatingtotheleft.
110Itfollowsthat:A(inEq.[2.113])istheamplitudeofawavecominginfromtheleft,Bistheamplitudeofawavereturningtotheleft,F(inEq.[2.114])istheamplitudeofawavetraveling
offtotheright,Gistheamplitudeofawavecominginfromtheright(seeFig.2.10).111112Inatypicalscatteringexperimentparticlesarefiredinfromonedirection—let’ssay,fromtheleft.Inthatcasetheamplitudeofthewavecominginfromthe
right
willbezero:Aisthentheamplitudeofthe
incidentwave,Bistheamplitudeofthereflectedwave,andFistheamplitudeofthe
transmittedwave.
SolvingEqs.[2.115]and[2.117]forBandF,wefind113Now,theprobabilityoffindingtheparticleataspecifiedlocationisgivenby||2,sotherelative
probabilitythatanincidentparticlewillbereflectedbackisRiscalledthereflectioncoefficient.
Meanwhile,theprobabilityoftransmissionisgivenbythetransmissioncoefficient
114NoticethatRandTarefunctionsof,andhence(Eqs.[2.112]and[2.117])ofE:
FromEq.[2.123],itcanbefoundthatthehighertheenergy,thegreatertheprobabilityoftransmission
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 集体资产投资合同协议
- 风机厂家转让合同协议
- 雇佣季节工合同协议
- 长宁区家电运输合同协议
- 长期临时工合同协议
- 防疫大礼包采购合同协议
- 门店运营合作合同协议
- 食堂解除合同协议范本
- 风电安装劳务合同协议
- 雨污水管维修合同协议
- 铜及铜合金物理冶金基础-塑性加工原理
- 2023年自考外国新闻事业史历年考题及部分答案
- 安徽汇宇能源发展有限公司25万吨年石脑油芳构化项目环境影响报告书
- 新《行政处罚法》亮点ppt解读
- DB35T 2092-2022 高速公路边坡工程养护技术规范
- LY/T 1970-2011绿化用有机基质
- 部编人教版五年级语文下册第18课《威尼斯的小艇》精美课件
- 消防(电动车)火灾安全知识课件
- VSM(价值流图中文)课件
- 上海交通大学医学院附属仁济医院-日间手术管理信息化实践与发展
- 核电站入厂安全培训课件
评论
0/150
提交评论