版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
算法的概念
什么是算法?
例:要把大象装冰箱,分几步?第一步:把冰箱门打开第二步:把大象装进去第三步:把冰箱门关上思考:如果把其他东西放进冰箱,是不是也是这样的步骤?例:要把猴子装冰箱,分几步?第一步:把冰箱门打开第二步:把大象拿出来第三步:把猴子装进去第四步:把冰箱门关上其实,这就是一个算法解方程第一步,由(1)得第二步,将(3)代入(2)得第三步,解(4)得第四步,将(5)代入(3)得第五步,得到方程组的解得解方程第一步,第二步,第三步,第四步,第五步,得到方程组的解得写出一般二元一次方程组的解法步骤.
第一步,第二步,解(3)得
写出一般二元一次方程组的解法步骤.
第四步,解(4)得
第三步,
第五步,得到方程组的解为
广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法;电器的说明书是操作电器的算法;
你认为“算法”是怎样的?你还能举出一个例子么?魔方说明书算法的概念算法:
在数学中算法通常指按照一定规则解决某一类问题的明确和有限的步骤.
现在,算法通常可以编成计算机程序,让计算机执行并解决问题.
2.算法的特点:明确性:算法中的每一个步骤都是确切的,能有效的执行且得到确定的结果,不能模棱两可。有限性:算法应由有限步组成,必须在有限操作之后停止,并给出计算结果。思考:有人对歌德巴赫猜想“任何大于4的偶数都能写成两个奇质数之和”设计了如下操作步骤:第一步:检验6=3+3第二步:检验8=3+5第三步:检验10=5+5......
利用计算机算下去!请问,利用这种程序能够证明猜想的正确性吗?这是一种算法吗?2.算法的特点:明确性:算法中的每一个步骤都是确切的,能有效的执行且得到确定的结果,不能模棱两可。有序性:算法从初始步骤开始,分为若干明确的步骤,每一步都只能有一个确定的继任者,只有执行完前一步才能进入到后一步,并且每一步都确定无误后,才能解决问题。不唯一性:求解某一个问题的解法不一定是唯一的,对于同一个问题可以有不同的解法,但算法有优劣之分,好的算法是我们追求的目标.普适性:写出的算法必须能解决一类问题,并且能重复使用,这是设计算法的一条基本原则,这样才能使算法更有价值.有限性:算法应由有限步组成,必须在有限操作之后停止,并给出计算结果。应用举例例1.(1)设计一个算法判断7是否为质数.第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.应用举例例1.(2)设计一个算法判断35是否为质数。第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.设计一个算法,判断整数n(n>2)是否为质数?第一步,给定大于2的整数n。第二步,令i=2第三步,用i除n,得到余数r。第四步,判断“r=0”是否成立。第五步,判断“i>(n-1)”是否成立。若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示。若是,则n不是质数,结束算法;否则,返回第三步例2.写出求一元二次方程ax2+bx+c=0的根的算法.第一步,计算Δ=b2-4ac.第二步,如果Δ<0,则原方程无实数解,算法结束;否则(Δ≥0)时,第三步:输出x1,x2或无实数解的信息.第一步,令s=0第二步,令i=1。第三步,求出s+i,仍用s表示。第四步,判断i>100是否成立?若是,输出s;若不是,将i的值增加1,仍用i表示返回第三步。例3:读下列算法,回答问题:(1)该算法是解决什么问题的?(2)最终输出的结果是什么?1.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.第一步:输入任意一个正实数r;第二步:计算圆的面积:S=πr2;第三步:输出圆的面积S.练习2.下面的四种叙述不能称为算法的是()(A)广播的广播操图解(B)歌曲的歌谱(C)做饭用米(D)做米饭需要刷锅、淘米、添水、加热这些步骤C3.下列关于算法的说法正确的是()(A)某算法可以无止境地运算下去(B)一个问题的算法步骤可以是可逆的(C)完成一件事情的算法有且只有一种(D)设计算法要本着简单、方便、可操作的原则D4.下列关于算法的说法中,正确的是().A.算法就是某个问题的解题过程B.算法执行后可以不产生确定的结果C.解决某类问题的算法不是惟一的D.算法可以无限地操作下去不停止C5.下列运算中不属于我们所讨论算法范畴的是().A.已知圆的半径求圆的面积B.从一副扑克牌随意抽取3张扑克牌抽到24点的可能性C.已知坐标平面内的两点求直线的方程D.加减乘除运算法则B6.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总分和平均成绩的一个算法为:第一步取A=89,B=96,C=99;第二步
①
;第三步
②
;第四步输出D(总分),E(平均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年信息化施工管理合同
- 2025年在线教育平台搭建可行性研究报告
- 2025年特色小镇开发与建设项目可行性研究报告
- 2025年农田灌溉智能监控系统项目可行性研究报告
- 2025年生态友好型农业示范项目可行性研究报告
- 2025年面向未来的城市生态公园项目可行性研究报告
- 消毒锅租赁协议书
- 乙方解除协议书
- 紫苏种植合同范本
- 港口转让协议合同
- 电池PACK箱体项目可行性研究报告(备案审核模板)
- HY/T 0457-2024蓝碳生态系统碳储量调查与评估技术规程海草床
- 贵州省2023年7月普通高中学业水平合格性考试地理试卷(含答案)
- 实施“十五五”规划的发展思路
- 东航心理测试题及答案
- 资金无偿赠予协议书
- 课件王思斌:社会工作概论
- 2025年度交通运输安全生产费用使用计划
- 防水工程验收单
- 2025年高考数学总复习《立体几何》专项测试卷及答案
- 2025工程质检部工作计划
评论
0/150
提交评论