版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年四川省内江市铁路中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如上右图是计算的值的一个程序框图,其中在判断框内应填入的条件是(
).A.i≤10
B.i>10
C.i<20
D.i>20参考答案:A2.设a=cos6°﹣sin6°,b=,c=,则有()A.a>b>c B.a<b<c C.b<c<a D.a<c<b参考答案:D【考点】三角函数的化简求值.【专题】三角函数的求值;三角函数的图像与性质.【分析】由三角函数恒等变换化简可得a=sin24°,b=sin26°,c=sin25°.根据角的范围和正弦函数的单调性即可比较大小.【解答】解:∵a=cos6°﹣sin6°=sin30°cos6°﹣cos30°sin6°=sin24°,b==sin26°,c==sin25°.∵0°<24°<25°<26°<90°∴sin26°>sin25°>sin24°,即有:a<c<b,故选:D.【点评】本题主要考查了三角函数的恒等变换的应用,正弦函数的单调性,属于基本知识的考查.3.已知向量满足,且对任意实数,不等式恒成立,设与的夹角为,则(
)A.
B.
C.
D.参考答案:D因为向量,,所以.又因为不等式恒成立,所以恒成立.所以,所以.即.
4.设是各项为正数的等比数列,是其公比,是其前项的积,且,则下列结论错误的是(
)A、
B、C、
D、与均为的最大值参考答案:C5.设向量,,,且,则实数的值是(
)A、5
B、4
C、3
D、
参考答案:A略6.若tanα<0,且sinα>cosα,则α在()A.第一象限 B.第二象限
C.第三象限
D.第四象限参考答案:B7.与为同一函数的是(
)。
A.
B.
C.
D.参考答案:B8.给出以下四个问题:①输入一个数,输出它的相反数.②求面积为的正方形的周长.③求三个数中输入一个数的最大数.④求函数的函数值.其中不需要用条件语句来描述其算法的有(
)A.个
B.个
C.个
D.个参考答案:B不需要用条件语句来描述其算法的有①②。9.已知数列{an}的前n项和S满足,则(
)A.196 B.200C. D.参考答案:B【分析】已知递推公式再递推一步,得到两个递推公式,相减,对这个式子分类讨论,求出需要的项,然后求值。【详解】(1)当时,(2),(1)-(2)得;,当为偶数时,,当时,,当为奇数时,,时,。【点睛】本题考查了数列的递推公式,重点考查了分类讨论思想。10.设,则下列不等式中一定成立的是
(
)A.
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知,,则
.参考答案:12.数列{an}满足,且对于任意的都有,则an=
,
.参考答案:
∵满足,且对于任意的都有,,
∴,
∴
.∴.
13.若,则=
.参考答案:
;略14.在的面积,则=____参考答案:
略15.已知函数定义域是,则的定义域是
参考答案:16.(5分)已知圆x2+y2+2x﹣4y﹣4=0,则圆心
,半径为
.参考答案:(﹣1,2),3.考点: 圆的一般方程.专题: 直线与圆.分析: 求出圆的标准方程即可得到结论.解答: 将圆进行配方得圆的标准方程为(x+1)2+(y﹣2)2=9,则圆心坐标为(﹣1,2),半径R=3,故答案为:(﹣1,2),3点评: 本题主要考查圆的标准方程的求解,利用配方法将一般方程配成标准方程是解决本题的关键.17.高一某班有学生50人,其中男生30人。年级为了调查该班学情,现采用分层抽样(按男、女分层)从该班抽取一个容量为10的样本,则应抽取男生的人数为_________。参考答案:6由题意得抽样比为,∴应抽取男生的人数为人.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)求函数的最小正周期和值域;(2)设A,B,C为△ABC的三个内角,若,,求cosA的值.参考答案:(1)周期,值域为;(2).【分析】(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周期公式求出函数的最小正周期,并求出函数的值域;(2)先由的值,求出角的值,然后由结合同角三角函数的基本关系以及两角和的余弦公式求出的值。【详解】(1)∵且,∴故所求周期,值域为;(2)∵是的三个内角,,∴∴又,即,又∵,故,故.【点睛】本题考查三角函数与解三角形的综合问题,考查三角函数的基本性质以及三角形中的求值问题,求解三角函数的问题时,要将三角函数解析式进行化简,结合正余弦函数的基本性质求解,考查分析问题的能力和计算能力,属于中等题。19.已知,m是实常数,(1)当m=1时,写出函数f(x)的值域;(2)当m=0时,判断函数f(x)的奇偶性,并给出证明;(3)若f(x)是奇函数,不等式f(f(x))+f(a)<0有解,求a的取值范围.参考答案:【考点】奇偶性与单调性的综合.【专题】综合题;方程思想;定义法;函数的性质及应用.【分析】(1)当m=1时,结合指数函数的单调性即可写出函数f(x)的值域;(2)当m=0时,根据函数奇偶性的定义即可判断函数f(x)的奇偶性,并给出证明;(3)根据函数奇偶性和单调性之间的关系将不等式进行转化即可.【解答】解:(1)当m=1时,,定义域为R,,,即函数的值域为(1,3).…(2)f(x)为非奇非偶函数.…当m=0时,,因为f(﹣1)≠f(1),所以f(x)不是偶函数;又因为f(﹣1)≠﹣f(1),所以f(x)不是奇函数;即f(x)为非奇非偶函数.…(3)因为f(x)是奇函数,所以f(﹣x)=﹣f(x)恒成立,即对x∈R恒成立,化简整理得,即m=﹣1.…(若用特殊值计算m,须验证,否则,酌情扣分.)下用定义法研究的单调性:设任意x1,x2∈R,且x1<x2=,…所以函数f(x)在R上单调递减.因为f(f(x))+f(a)<0有解,且函数为奇函数,所以f(f(x))<﹣f(a)=f(﹣a)有解,又因为函数f(x)在R上单调递减,所以f(x)>﹣a有解,即fmax(x)>﹣a有解,又因为函数的值域为(﹣1,1),所以﹣a<1,即a>﹣1.…【点评】本题主要考查函数值域,奇偶性以及函数单调性的应用,根据函数奇偶性和单调性的定义和性质,20.已知等差数列{an}满足,前3项和.(1)求{an}的通项公式.(2)设等比数列{bn}满足,求{bn}的前n项和Tn.参考答案:(1)(2)分析:(1)已知数列为等差数列,且知与的值,设首项与公差,代入解方程即可;(2)求出、即、,设首项与公比,列式解出.代入前n项和公式即可.详解:(1)设的公差为,则由已知条件得,,化简得,,解得,,故的通项公式,即.(2)由(1)得,.设的公比为,则,从而,故的前项和.点睛:本题综合考察等差等比数列的通项公式与前n项和公式,需要熟练掌握,代入公式,解得首项与公差公比即可.21.已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求的解析式;(2)当时,求的值域.参考答案:(1);(2)22.在△ABC中,角A、B、C所对的边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宜兴电工证考试题库及答案
- 20263M(中国)校招面试题及答案
- 传感器刘换成试题及答案
- 未来五年传输线-天线分析仪企业ESG实践与创新战略分析研究报告
- 三台县2025年县级事业单位面向县内乡镇公开选调工作人员(16人)备考题库必考题
- 北京中国石油大学教育基金会招聘2人参考题库附答案
- 南昌市建设投资集团有限公司公开招聘【20人】参考题库必考题
- 山东高速集团有限公司2025年下半年社会招聘(162人) 备考题库必考题
- 招23人!高中可报、2025年茫崖市公安局面向社会公开招聘警务辅助人员备考题库附答案
- 盐亭县2025年教体系统面向县外公开考调事业单位工作人员的考试备考题库附答案
- 绍兴金牡印染有限公司年产12500吨针织布、6800万米梭织布高档印染面料升级技改项目环境影响报告
- 成人呼吸支持治疗器械相关压力性损伤的预防
- DHA乳状液制备工艺优化及氧化稳定性的研究
- 2023年江苏省五年制专转本英语统考真题(试卷+答案)
- 三星-SHS-P718-指纹锁使用说明书
- 岳麓书社版高中历史必修三3.13《挑战教皇的权威》课件(共28张PPT)
- GC/T 1201-2022国家物资储备通用术语
- 污水管网监理规划
- GB/T 6730.65-2009铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)
- GB/T 35273-2020信息安全技术个人信息安全规范
- 《看图猜成语》课件
评论
0/150
提交评论