版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市荆洲中学2021年高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,,若与共线,则等于(
)A.;
B.
C.
D.参考答案:C2.已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X>4)=(
)A、0.1588
B、0.1587
C、0.1586
D0.1585参考答案:B略3.(
)A. B. C.
D.参考答案:A略4.已知直线y=kx+2与椭圆总有公共点,则m的取值范围是A.m≥4
B.0<m<9
C.4≤m<9
D.m≥4且m≠9参考答案:D5.执行右边的程序框图,如果输入,那么输出的的值为(
)A.3
B.4
C.5
D.6参考答案:A略6.在等差数列中,已知,则(
)A.
B.
C.
D.参考答案:试题分析:.考点:等差数列性质;等差数列前项和公式.7.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使在C塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔高AB的高度为(
)A.10 B.10 C.10 D.10参考答案:D【考点】解三角形的实际应用.【专题】计算题;解三角形.【分析】先在△ABC中求出BC,再△BCD中利用正弦定理,即可求得结论.【解答】解:设塔高AB为x米,根据题意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,从而有BC=x,AC=x在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°由正弦定理可得,=∴BC==10∴x=10∴x=故塔高AB=【点评】本题考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,属于中档题.8.若,则有(
)A.
B.
C.D.参考答案:B略9.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0] B.[﹣∞,﹣]∪[0,+∞] C.[﹣,] D.[﹣,0]参考答案:A【考点】直线与圆的位置关系.【专题】直线与圆.【分析】由弦长公式得,当圆心到直线的距离等于1时,弦长等于2,故当弦长大于或等于2时,圆心到直线的距离小于或等于1,解此不等式求出k的取值范围.【解答】解:设圆心(3,2)到直线y=kx+3的距离为d,由弦长公式得,MN=2≥2,故d≤1,即≤1,化简得8k(k+)≤0,∴﹣≤k≤0,故k的取值范围是[﹣,0].故选:A【点评】本题主要考查点到直线的距离公式,以及弦长公式的应用,属于中档题.10.如果定义在R上的函数f(x)满足:对于任意x1≠x2,都有x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1),则称f(x)为“H函数”.给出下列函数:①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④f(x)=,其中“H函数”的个数有()A.3个 B.2个 C.1个 D.0个参考答案:A【考点】命题的真假判断与应用.【分析】不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0,即满足条件的函数为不减函数,判断函数的单调性即可得到结论.【解答】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间).①函数y=﹣x3+x+1,则y′=﹣2x2+1,在在[﹣,]函数为减函数.不满足条件.②y=3x﹣2(sinx﹣cosx),y′=3﹣2cosx+2sinx=3+2(sinx﹣cosx)=3﹣2sin(x﹣)>0,函数单调递增,满足条件.③y=ex+1是定义在R上的增函数,满足条件.④f(x)=,x≥1时,函数单调递增,当x<1时,函数为常数函数,满足条件.故选:A二、填空题:本大题共7小题,每小题4分,共28分11.考古学家通过始祖鸟化石标本发现:其股骨长度x(cm)与肱骨长度y(cm)线性回归方程为=1.197x-3.660,由此估计,当股骨长度为50cm时,肱骨长度的估计值为___________cm.参考答案:略
12.已知,且与的夹角为钝角,则实数的取值范围是----______参考答案:略13.若,且,则的最小值为__
__。
参考答案:14.在推导等差数列前n项和的过程中,我们使用了倒序相加的方法,类比可以求得
.参考答案:
15.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为.参考答案:10考点: 系统抽样方法.
专题: 概率与统计.分析: 由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=9+(n﹣1)30=30n﹣21,由451≤30n﹣21≤750求得正整数n的个数,即为所求.解答: 解:由960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为an=9+(n﹣1)30=30n﹣21.由451≤30n﹣21≤750解得15.7≤n≤25.7.再由n为正整数可得
16≤n≤25,且n∈z,故做问卷B的人数为10,故答案为:10.点评: 本题主要考查等差数列的通项公式,系统抽样的定义和方法,属于基础题.16.命题“”的否定是
.参考答案:
17.设变量满足约束条件,则函数的最大值为
▲
;参考答案:10三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知f(x)是R上的奇函数,且当x>0时,f(x)=-2x2+4x+3.(1)求f(x)的表达式;(2)画出f(x)的图象,并指出f(x)的单调区间.参考答案:见解析(1)设x<0,则-x>0,于是f(-x)=-2(-x)2-4x+3=-2x2-4x+3.又∵f(x)为奇函数,∴f(-x)=-f(x).因此f(x)=2x2+4x-3.又∵f(0)=0,∴f(x)=(2)先画出y=f(x)(x>0)的图象,利用奇函数的对称性可得到相应y=f(x)(x<0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).考点:根据函数的奇偶性和单调性求函数解析式19.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:
(1)
3个全是红球的概率.
(2)
3个颜色全相同的概率.
(3)
3个颜色不全相同的概率.
(4)
3个颜色全不相同的概率.参考答案:解:(1);(2);(3);(4)略20.(12分)已知是公比为的等比数列,且成等差数列.⑴求的值;⑵设是以为首项,为公差的等差数列,求的前项和.参考答案:(1)由题知:
或(舍去)
(2)
21.已知:a+b+c>0,ab+bc+ca>0,abc>0.
求证:a>0,b>0,c>0.参考答案:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b),ab+c(a+b)<-(a+b)(a+b)+ab,
即ab+bc+ca<-a2-ab-b2.∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab+bc+ca>0矛盾,假设不成立.因此a>0,b>0,c>0成立.略22.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,(a∈R).(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若函数f(x)在(0,)上无零点,求a的取值范围.参考答案:【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为x∈(0,),a>2﹣恒成立,令h(x)=2﹣,x∈(0,),根据函数的单调性求出h(x)的最大值,从而求出a的范围即可.【解答】解:(Ⅰ)当a=1时,f(x)=x﹣1﹣2lnx,则f′(x)=1﹣,由f′(x)>0,得x>2,由f′(x)<0,得0<x<2,故f(x)的单调减区间为(0,2],单调增区间为[2,+∞);(Ⅱ)因为f(x)<0在区间(0,)上恒成立不可能,故要使函数f(x)在(0,)上无零点,只要对任意的x∈(0,),f(x)>0恒成立,即对x∈(0,)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗数据安全人才混合式教学模式
- 胃肠课件教学
- 医疗数据安全与医疗数据安全制度
- 医疗数据安全与区块链技术标准对接
- 医疗数据商业化与隐私边界设定
- 2026届云南省西盟县第一中学高三英语第一学期期末统考试题含解析
- 02:2024届安徽省皖南八校高三下学期第三次大联考物理试卷 学生版答案
- DB15-T 1343-2025 场(厂)内专用防爆机动车辆检验导则
- 医疗数据共享的医疗物联网安全
- 2026届黑龙江省北安市第一中学高三语文第一学期期末综合测试试题含解析
- 24年一年级上册语文期末复习21天冲刺计划(每日5道题)
- 静疗工作总结
- 2024-2025学年吉安市泰和县六上数学期末综合测试模拟试题含解析
- 五年级下学期数学自然数(课件)
- JJF 1064-2024坐标测量机校准规范
- 银行案件复盘分析报告
- 贵州省黔东南州2022-2023学年八年级上学期期末文化水平测试数学试卷(含答案)
- 新教材2024版高中地理本册整合提升课件新人教版必修第一册
- 锯齿形板式热水冷却器的设计.文档
- 资产评估学教程(第八版)习题及答案 乔志敏
- 水平三(五年级)体育《篮球:单手肩上投篮》说课稿课件
评论
0/150
提交评论