版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市汉口北高中2024年高二数学第一学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列中,,,则()A. B.C. D.2.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.3.函数在的图象大致为()A. B.C D.4.(文科)已知点为曲线上的动点,为圆上的动点,则的最小值是A.3 B.5C. D.5.有一机器人的运动方程为,(是时间,是位移),则该机器人在时刻时的瞬时速度为()A. B.C. D.6.直线的方向向量为()A. B.C. D.7.已知抛物线,为坐标原点,以为圆心的圆交抛物线于、两点,交准线于、两点,若,,则抛物线方程为()A. B.C. D.8.已知直线过点,且与直线垂直,则直线的方程为()A. B.C. D.9.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.10.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的中心为原点,焦点,均在y轴上,椭圆C的面积为,且短轴长为,则椭圆C的标准方程为()A. B.C. D.11.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定12.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.函数的图象在点处的切线方程为___________.14.斐波那契数列,又称“兔子数列”,由数学家斐波那契研究兔子繁殖问题时引入.已知斐波那契数列满足,,,若记,,则________.(用,表示)15.已知函数定义域为,值域为,则______16.已知函数,则满足实数的取值范围是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,满足,已知点是曲线上任意一点,曲线在处的切线为.(1)求切线的倾斜角的取值范围;(2)若过点可作曲线的三条切线,求实数的取值范围.18.(12分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.19.(12分)芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x(亿元)与收益y(亿元)的数据统计如下:(1)根据折线图的数据,求y关于x的线性回归方程(系数精确到整数部分);(2)为鼓励科技创新,当研发技术投入不少于16亿元时,国家给予公司补贴5亿元,预测当芯片的研发投入为17亿元时公司的实际收益附:其回归方程的斜率和截距的最小二乘法估计分别为,.参考数据,20.(12分)设函数.(1)求在处的切线方程;(2)求的极小值点和极大值点.21.(12分)已知的内角A,B,C的对边分别为a,b,c.(1)若,,,求边长c;(2),,,求角C.22.(10分)已知函数.(1)若函数的图象在处的切线方程为,求的值;(2)若函数在上是增函数,求实数的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【题目详解】解:设公比为,因为,,所以,即,解得,所以;故选:D2、D【解题分析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【题目详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D3、D【解题分析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.4、A【解题分析】数形结合分析可得,当时能够取得的最小值,根据点到圆心的距离减去半径求解即可.【题目详解】由对勾函数的性质,可知,当且仅当时取等号,结合图象可知当A点运动到时能使点到圆心的距离最小,最小为4,从而的最小值为.故选:A【题目点拨】本题考查两动点间距离的最值问题,考查转化思想与数形结合思想,属于中档题.5、B【解题分析】对运动方程求导,根据导数意义即速度求得在时的导数值即可.【题目详解】由题知,,当时,,即速度为7.故选:B6、D【解题分析】根据直线方程,求得斜率k,分析即可得直线的方向向量.【题目详解】直线变形可得,所以直线的斜率,所以向量为直线的一个方向向量,因为,所以向量为直线的方向向量,故选:D7、C【解题分析】设圆的半径为,根据已知条件可得出关于的方程,求出正数的值,即可得出抛物线的方程.【题目详解】设圆的半径为,抛物线的准线方程为,由勾股定理可得,因为,将代入抛物线方程得,可得,不妨设点,则,所以,,解得,因此,抛物线的方程为.故选:C.8、A【解题分析】求出直线斜率,利用点斜式可得出直线的方程.【题目详解】直线的斜率为,则直线的斜率为,故直线的方程为,即.故选:A.9、B【解题分析】由已知求得,再根据当时,,,可求得范围.【题目详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.10、C【解题分析】设出椭圆的标准方程,根据已知条件,求得,即可求得结果.【题目详解】因为椭圆的焦点在轴上,故可设其方程为,根据题意可得,,故可得,故所求椭圆方程为:.故选:C.11、B【解题分析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【题目详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.12、C【解题分析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【题目详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】求导得到,计算,根据点斜式可得到切线方程.【题目详解】因此,则,故,又点在函数的图象上,故切线方程为:,即.故答案为:14、【解题分析】由已知两式相加求得,得,得到,从而得到,,利用可得答案.【题目详解】因为,由,,得,所以,得,因为,所以,,所以,,所以,.故答案为:.15、3【解题分析】根据定义域和值域,结合余弦函数的图像与性质即可求得的值,进而得解.【题目详解】因为,由余弦函数的图像与性质可得,则,由值域为可得,所以,故答案为:3.【题目点拨】本题考查了余弦函数图像与性质的简单应用,属于基础题.16、【解题分析】分别对,分别大于1,等于1,小于1的讨论,即可.【题目详解】对,分别大于1,等于1,小于1的讨论,当,解得当,不存在,当时,,解得,故x的范围为点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据题意求出值,求导后通过导数的值域求出斜率范围,从而得到倾角范围.(2)利用导数几何意义得到过P点的切线方程,化简后构造m的函数,求新函数的极大值极小值即可.【小问1详解】因为,则,解得,所以,则,故,,,,,切线的倾斜角的的取值范围是,,.小问2详解】设曲线与过点,的切线相切于点,则切线的斜率为,所以切线方程为因为点,在切线上,所以,即,由题意,该方程有三解设,则,令,解得或,当或时,,当时,,所以在和上单调递减,在上单调递增,故的极小值为,极大值为,所以实数的取值范围是.18、(1)(2)【解题分析】(1)求出PM,就可以求PQ的范围;(2)使用待定系数法求出切线的方程,再求求切点的坐标,从而可以求切点的连线的方程.【小问1详解】如下图所示,因为圆的方程可化为,所以圆心,半径,且,所以,故取值范围为.【小问2详解】可知切线,中至少一条的斜率存在,设为,则此切线为即,由圆心到此切线的距离等于半径,即,得所以两条切线的方程为和,于是由联立方程组得两切点的坐标为和所以故直线的方程为即19、(1)(2)85亿元【解题分析】(1)利用公式和数据计算即可(2)代入回归直线计算即可【小问1详解】由折线图中数据知,,,因为,所以所以y关于x的线性回归方程为【小问2详解】当时,亿元,此时公司的实际收益的预测值为亿元20、(1);(2)极大值点,极小值点.【解题分析】(1)求函数的导数,利用函数的导数求出切线的斜率,结合切点坐标,然后求解切线方程;(2)利用导数研究f(x)的单调性,判断函数的极值点即可【小问1详解】函数,函数的导数为,,在处的切线方程:,即【小问2详解】令,,解得,当时,可得,即的单调递减区间,或,可得,∴函数单调递增区间,,的极大值点,极小值点21、(1)(2)或【解题分析】(1)根据余弦定理可求得答案;(2)根据正弦定理和三角形的内角和可求得答案.【小问1详解】解:由余弦定理得:,所以.【小问2详解】解:由正弦定理得:得,所以或120°,又因为,所以,所以或即或.22、(1);(2).【解题分析】(1)先对函数求导,再根据在处的切线斜率可得到参数的值,然后代入,求出的值,则即可得出;(2)根据函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论