浙江省温州市苍南县树人中学2024学年数学高二上期末教学质量检测试题含解析_第1页
浙江省温州市苍南县树人中学2024学年数学高二上期末教学质量检测试题含解析_第2页
浙江省温州市苍南县树人中学2024学年数学高二上期末教学质量检测试题含解析_第3页
浙江省温州市苍南县树人中学2024学年数学高二上期末教学质量检测试题含解析_第4页
浙江省温州市苍南县树人中学2024学年数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市苍南县树人中学2024学年数学高二上期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有2.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.3.函数的图像大致是()A B.C. D.4.椭圆的长轴长是短轴长的2倍,则离心率()A. B.C. D.5.已知,则点到平面的距离为()A. B.C. D.6.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.7.已知,,则的最小值为()A. B.C. D.8.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.9.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为10.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A. B.C. D.11.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.12.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.36二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_______.14.设椭圆,点在椭圆上,求该椭圆在P处的切线方程______.15.已知点是椭圆上的一点,分别为椭圆的左、右焦点,已知=120°,且,则椭圆的离心率为___________.16.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且在处取得极值.(1)求的值;(2)当,求的最小值.18.(12分)公差不为0的等差数列中,,且成等比数列(1)求数列的通项公式;(2)设,数列的前n项和为.若,求的取值范围19.(12分)已知定义域为的函数是奇函数,其中为指数函数且的图象过点(1)求的表达式;(2)若对任意的.不等式恒成立,求实数的取值范围;20.(12分)已知函数(1)讨论函数的单调性;(2)证明:对任意正整数n,21.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)若圆C与直线交于A,B两点,______,求m的值从下列三个条件中任选一个补充在上面问题中并作答:条件①:;条件②:圆上一点P到直线的最大距离为;条件③:22.(10分)如图,在直棱柱中,已知,点分别的中点.(1)求异面直线与所成的角的大小;(2)求点到平面的距离;(3)在棱上是否存在一点,使得直线与平面所成的角的大小是?若存在,请指出点的位置,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】全称命题的否定是特称命题【题目详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C2、D【解题分析】根据三角形解得个数可直接构造不等式求得结果.【题目详解】三角形有两个解,,即.故选:D.3、B【解题分析】由函数有两个零点排除选项A,C;再借助导数探讨函数的单调性与极值情况即可判断作答.【题目详解】由得,或,选项A,C不满足;由求导得,当或时,,当时,,于是得在和上都单调递增,在上单调递减,在处取极大值,在处取极小值,D不满足,B满足.故选:B4、D【解题分析】根据长轴长是短轴长的2倍,得到,利用离心率公式即可求得答案.【题目详解】∵,∴,故,故选:D5、A【解题分析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【题目详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A6、D【解题分析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【题目详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D7、B【解题分析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【题目详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【题目点拨】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.8、D【解题分析】根据,可求得,然后逐一分析判断各个选项即可得解.【题目详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.9、D【解题分析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【题目详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.10、B【解题分析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【题目详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B11、A【解题分析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【题目详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【题目点拨】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.12、B【解题分析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【题目详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【题目点拨】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.14、【解题分析】由题意可知切线的斜率存在,所以设切线方程为,代入椭圆方程中整理化简,令判别式等于零,可求出的值,从而可求得切线方程【题目详解】由题意可知切线的斜率存在,所以设切线方程为,将代入中得,,化简整理得,令,化简整理得,即,解得,所以切线方程为,即,故答案为:15、【解题分析】设,由余弦定理知,所以,故填.16、【解题分析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【题目详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)对函数求导,则极值点为导函数的零点,进而建立方程组解出a,b,然后讨论函数的单调区间进行验证,最后确定答案;(2)根据(1)得到函数在上的单调区间,进而求出最小值.【小问1详解】,因为在处取得极值,所以,则,所以时,,单调递减,时,,单调递增,时,,单调递减,故为函数的极值点.于是.【小问2详解】结合(1)可知,在上单调递减,在上单调递增,在单调递减,而,所以.因为,所以.综上:的最小值为.18、(1)(2)【解题分析】(1)利用等比数列的定义以及等差数列的性质,列出方程即可得到答案;(2)先求出的通项,再利用的单调性即可得到的最小值,从而求得的取值范围【小问1详解】依题意,,,所以,设等差数列的公差为,则,解得,所以【小问2详解】,则数列是递增数列,,所以,若,则.19、(1);(2).【解题分析】(1)设(且),因为的图象过点,求得a的值,再根据函数f(x)是奇函数,利用f(0)=0即可求得n的值,得到f(x)的解析式,检验是奇函数即可;(2)将分式分离常数后,利用指数函数的性质可以判定f(x)在R上单调递减,进而结合奇函数的性质将不等式转化为二次不等式,根据二次函数的图象和性质,求得对于对任意的恒成立时a的取值范围即可.【题目详解】解:(1)由题意,设(且),因为的图象过点,可得,解得,即,所以,又因为为上的奇函数,可得,即,解得,经检验,符合,所以(2)由函数,可得在上单调递减,又因为为奇函数,所以,所以,即,又因为对任意的,不等式恒成立,令,即对任意的恒成立,可得,即,解得,所以实数的取值范围为【题目点拨】本题考查函数的奇偶性,指数函数及其性质和函数不等式恒成立问题,关键是利用函数的单调性和奇偶性将不等式转化为二次不等式在闭区间上恒成立问题,然后利用二次函数的图象转化为二次函数的端点值满足的条件.另外注意,第一问中,利用特值f(0)=0求得解析式后,要注意检验对于任意的实数x,f(x)=-f(-x)恒成立.20、(1)见解析(2)见解析【解题分析】(1)由,令,得,或,又的定义域为,讨论两个根及的大小关系,即可判定函数的单调性;(2)当时,在,上递减,则,即,由此能够证明【小问1详解】的定义域为,,令,得,或,①当,即时,若,则,递增;若,则,递减;②当,即时,若,则,递减;若,则,递增;若,则,递减;综上所述,当-2<a<0时,f(x)在,单调递减,在单调递增;当a≥0时,f(x)在单调递增,在单调递减.【小问2详解】由(2)知当时,在,上递减,,即,,,,2,3,,,,【题目点拨】本题考查利用导数研究函数的单调性,本题的关键是令a=1,用已知函数的单调性构造,再令x=恰当地利用对数求和进行解题21、(1)(2)【解题分析】(1)根据圆心在过点,的线段的中垂线上,同时圆心圆心在直线上,可求出圆心的坐标,进而求得半径,最后求出其标准方程;(2)选①利用用垂径定理可求得答案,选②根据圆上一点P到直线的最大距离为可求得答案,选③先利用向量的数量积可求得,解法就和选①时相同.【小问1详解】由题意可知,圆心在点的中垂线上,该中垂线的方程为,于是,由,解得圆心,圆C的半径所以,圆C的方程为;【小问2详解】①,因为,,所以圆心C到直线l的距离,则,解得,②,圆上一点P到直线的最大距离为,可知圆心C到直线l的距离则,解得,③,因为,所以,得,又,所以圆心C到直线l的距离,则,解得22、(1)(2)(3)不存在,理由见解析【解题分析】(1)由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论