版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年吉林省蛟河市高二上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.52.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于3.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④4.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.5.已知直线与直线垂直,则()A. B.C. D.36.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-107.圆与圆的公切线的条数为()A.1 B.2C.3 D.48.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.9.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-710.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定11.将一枚均匀的骰子先后抛掷3次,至少出现两次点数为3的概率为()A. B.C. D.12.双曲线的左顶点为,右焦点,若直线与该双曲线交于、两点,为等腰直角三角形,则该双曲线离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______14.方程()所表示的直线恒过定点________15.若椭圆的焦点在轴上,且长轴长是短轴长的2倍,则______.16.若双曲线的渐近线方程为,则该双曲线的离心率为___________;若,则双曲线的右焦点到渐近线的距离为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,,,为边上一点,且(1)求;(2)若,求18.(12分)已知抛物线,直线交于、两点,且当时,.(1)求的值;(2)如图,抛物线在、两点处的切线分别与轴交于、,和交于,.证明:存在实数,使得.19.(12分)在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.20.(12分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.21.(12分)已知椭圆:经过点,设右焦点F,椭圆上存在点Q,使QF垂直于x轴且.(1)求椭圆的方程;(2)过点的直线与椭圆交于D,G两点.是否存在直线使得以DG为直径的圆过点E(-1,0)?若存在,求出直线的方程,若不存在,说明理由.22.(10分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【题目详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C2、C【解题分析】利用简易逻辑的知识逐一判断即可.【题目详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C3、C【解题分析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【题目详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【题目点拨】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.4、A【解题分析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.5、D【解题分析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【题目详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.6、C【解题分析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【题目详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C7、D【解题分析】公切线条数与圆与圆的位置关系是相关的,所以第一步需要判断圆与圆的位置关系.【题目详解】圆的圆心坐标为,半径为3;圆的圆心坐标为,半径为1,所以两圆的心心距为,所以两圆相离,公切线有4条.故选:D.8、C【解题分析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【题目详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.9、A【解题分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【题目详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A10、C【解题分析】求出的值,结合大边对大角定理可得出结论.【题目详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.11、D【解题分析】利用次独立重复试验中事件A恰好发生次的概率计算公式直接求解.【题目详解】解:将一枚均匀的筛子先后抛掷3次,每次出现点数为3的概率都是至少出现两次点数为3的概率为:故选:D12、A【解题分析】求出,分析可得,可得出关于、、的齐次等式,由此可求得该双曲线的离心率的值.【题目详解】联立,可得,则,易知点、关于轴对称,且为线段的中点,则,又因为为等腰直角三角形,所以,,即,即,所以,,可得,因此,该双曲线的离心率为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【题目详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:14、【解题分析】将方程化为,令得系数等于0,即可得到答案.【题目详解】方程可化为,由,得,所以方程()所表示的直线恒过定点.故答案为:.【题目点拨】本题考查了直线恒过定点问题,属于基础题.15、4【解题分析】根据椭圆焦点在轴上方程的特征进行求解即可.【题目详解】因为椭圆的焦点在轴上,所以有,因为长轴长是短轴长的2倍,所以有,故答案为:416、①.②.3【解题分析】由渐近线方程知,结合双曲线参数关系及离心率的定义求双曲线的离心率,由已知可得右焦点为,应用点线距离公式求距离.【题目详解】由题设,,则,当时,,则双曲线为,故右焦点为,所以右焦点到渐近线的距离为.故答案为:,3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【题目详解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴18、(1);(2)证明见解析.【解题分析】(1)将代入抛物线的方程,列出韦达定理,利用弦长公式可得出关于的等式,即可解得正数的值;(2)将代入,列出韦达定理,求出两切线方程,进而可求得点的坐标,分、两种情况讨论,在时,推导出、、重合,可得出;在时,求出的中点的坐标,利用斜率关系可得出,结合平面向量的线性运算可证得结论成立.【小问1详解】解:将代入得,设、,则,由韦达定理可得,则,解得或(舍),故.【小问2详解】解:将代入中得,设、,则,由韦达定理可得,对求导得,则抛物线在点处的切线方程为,即,①同理抛物线在点处的切线方程为,②联立①②得,所以,所以点的坐标为,当时,即切线与交于轴上一点,此时、、重合,由,则,又,则存在使得成立;当时,切线与轴交于点,切线与轴交于点,由,得的中点,由得,即,又,所以,所以,,又,所以存在实数使得成立.综上,命题成立.【题目点拨】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.19、(1)(2)【解题分析】(1)设,根据题意可得,,利用两点之间的距离公式表示出,化简即可得出结果;(2)设,,线段的中点为,利用两点坐标表示直线斜率的公式和点差法求出直线的斜率,设的方程为,联立椭圆方程并消去y得到关于x的一元二次方程,根据韦达定理表示、进而得出弦长,利用点到直线的距离公式求出原点到的距离,结合基本不等式计算即可.【小问1详解】设,由为线段上一点,且,得,,又,则,整理可得,所以轨迹的方程为;【小问2详解】设,,线段的中点为.∵在直线上,∴,∵A,在轨迹上,∴两式相减,可得,∴,即直线的斜率为,依题意,可设直线的方程为,由可得,则解得且由韦达定理,得,∴∵原点到直线的距离为∴,当且仅当,即时等号成立,即时,三角形的面积最大,此时直线的方程为.20、(1)证明见解析,(2)证明见解析【解题分析】(1)在等式两边同时除以,结合等差数列的定义可证得数列为等差数列,确定该数列的首项和公差,可求得的表达式;(2)求得,利用裂项相消法求得,即可证得原不等式成立.【小问1详解】解:在等式两边同时除以可得且,所以,数列是以为首项,以为公差的等差数列,则,因此,.【小问2详解】证明:,所以,.故原不等式得证.21、(1);(2)存在,或.【解题分析】(1)根据题意,列出的方程组,求得,则椭圆方程得解;(2)对直线的斜率进行讨论,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理,转化题意为,求解即可.小问1详解】由题意,得,设,将代入椭圆方程,得,所以,解得,所以椭圆的方程为.【小问2详解】当斜率不存在时,即时,,为椭圆短轴两端点,则以为直径的圆为,恒过点,满足题意;当斜率存在时,设,,,由得:,,解得:,,若以为直径的圆过点,则,即,又,,,解得:,满足,即,此时直线的方程为综上,存在直线使得以为直径的圆过点,的方程为或22、(1);(2)点不能为线段的中点,理由见解析.【解题分析】(1)由渐近线夹角求得一个斜率,再代入点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年交通银行交银金融科技秋季校园招聘备考题库及1套参考答案详解
- 2025年中国电建集团河北省电力勘测设计研究院有限公司校园招聘备考题库及1套参考答案详解
- 2026届广东省广州市增城高级中学数学高二上期末达标检测模拟试题含解析
- 2026届黑龙江省绥化七中语文高三上期末教学质量检测试题含解析
- 材料物理化学就业前景
- 云南省玉溪市峨山一中2026届语文高三上期末调研模拟试题含解析
- 重庆市江津中学、合川中学等七校2026届高三上英语期末复习检测模拟试题含解析
- 2025年月供给侧改革实践项目可行性研究报告
- 关务知识培训课件
- 偏瘫平衡功能训练
- 佛教的由来、发展和概况课件
- 大陆火灾基本形势
- 非物质文化遗产申请表
- 基层销售人员入职培训课程完整版课件
- 2023年郴州职业技术学院单招职业适应性测试题库及答案解析word版
- 西南大学PPT 04 实用版答辩模板
- D500-D505 2016年合订本防雷与接地图集
- 颅脑损伤的重症监护
- 《史记》上册注音版
- JJF 1985-2022直流电焊机焊接电源校准规范
- GB/T 19867.2-2008气焊焊接工艺规程
评论
0/150
提交评论