




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省汉川二中高二上数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且,则的值为()A.3 B.C. D.2.已知函数,则()A.3 B.C. D.3.已知向量分别是直线的方向向量,若,则()A. B.C. D.4.等差数列中,若,则()A.42 B.45C.48 D.515.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C. D.6.宋元时期数学名著《算学启蒙》中有关于“松竹并生"的问题,松长三尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的,分别为3,1,则输出的等于A.5 B.4C.3 D.27.丹麦数学家琴生(Jensen)是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,在上恒成立,则称函数在上为“凹函数”.则下列函数在上是“凹函数”的是()A. B.C. D.8.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则9.中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中5块五仁月饼、6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率是()A B.C. D.10.已知向量,,则等于()A. B.C. D.11.已知等差数列的前n项和为,且,则()A.2 B.4C.6 D.812.第届全运会于年月在陕西西安顺利举办,其中水上项目在西安奥体中心游泳跳水馆进行,为了应对比赛,大会组委会将对泳池进行检修,已知泳池深度为,其容积为,如果池底每平方米的维修费用为元,设入水处的较短池壁长度为,且据估计较短的池壁维修费用与池壁长度成正比,且比例系数为,较长的池壁维修费用满足代数式,则当泳池的维修费用最低时值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小值为______.14.数列的前项和为,则_________________.15.若正实数满足,则的最大值是________16.已知圆:,:.则这两圆的连心线方程为_________(答案写成一般式方程)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,直线.(1)若直线与椭圆相切,求实数的值;(2)若直线与椭圆相交于A、两点,为线段的中点,为坐标原点,且,求实数的值.18.(12分)篮天技校为了了解车床班学生的操作能力,设计了一个考查方案;每个考生从道备选题中一次性随机抽取道题,按照题目要求独立完成零件加工,规定:至少正确加工完成其中个零件方可通过.道备选题中,考生甲有个零件能正确加工完成,个零件不能完成;考生乙每个零件正确完成的概率都是,且每个零件正确加工完成与否互不影响(1)分别求甲、乙两位考生正确加工完成零件数的概率分布列(列出分布列表);(2)试从甲、乙两位考生正确加工完成零件数的数学期望及两人通过考查的概率分析比较两位考生的操作能力19.(12分)甲、乙等6个班级参加学校组织广播操比赛,若采用抽签的方式随机确定各班级的出场顺序(序号为1,2,…,6),求:(1)甲、乙两班级的出场序号中至少有一个为奇数的概率;(2)甲、乙两班级之间的演出班级(不含甲乙)个数X的分布列与期望20.(12分)已知函数(Ⅰ)求的单调区间和最值;(Ⅱ)设,证明:当时,21.(12分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.22.(10分)已知两条直线,.设为实数,分别根据下列条件求的值.(1);(2)直线在轴、轴上截距之和等于.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据题意,依次求出,观察规律,进而求出数列的周期,然后通过周期性求得答案.【题目详解】因为数列满足,,所以,所以,,,可知数列具有周期性,周期为3,,所以.故选:B2、B【解题分析】由导数运算法则求出导发函数,然后可得导数值【题目详解】由题意,所以故选:B3、C【解题分析】由题意,得,由此可求出答案【题目详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【题目点拨】本题主要考查向量共线的坐标表示,属于基础题4、C【解题分析】结合等差数列的性质求得正确答案.【题目详解】依题意是等差数列,,.故选:C5、C【解题分析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【题目详解】对任意,都有成立,即令,则,所以函数上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.6、B【解题分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【题目详解】解:当n=1时,a=3,b=2,满足进行循环的条件,当n=2时,a,b=4,满足进行循环的条件,当n=3时,a,b=8,满足进行循环的条件,当n=4时,a,b=16,不满足进行循环的条件,故输出的n值为4,故选:B【题目点拨】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答7、B【解题分析】根据“凹函数”的定义逐项验证即可解出【题目详解】对A,,当时,,所以A错误;对B,,在上恒成立,所以B正确;对C,,,所以C错误;对D,,,因为,所以D错误故选:B8、D【解题分析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【题目详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.9、C【解题分析】分别求出取到3块月饼都是同种月饼和取到3块月饼都是五仁月饼的种数,再根据概率公式即可得解.【题目详解】解:由题意可得,取到3块月饼都是同种月饼有种情况,取到3块月饼都是五仁月饼有种情况,所以在取到的都是同种月饼的条件下,都是五仁月饼的概率是.故选:C.10、C【解题分析】根据题意,结合空间向量的坐标运算,即可求解.【题目详解】由,,得,因此.故选:C.11、B【解题分析】根据等差数列前n项和公式,结合等差数列下标的性质、等差数列通项公式进行求解即可.【题目详解】设等差数列的公差为,,,故选:B12、A【解题分析】根据题意得到泳池维修费用的的解析式,再利用导数求出最值即可【题目详解】解:设泳池维修的总费用为元,则由题意得,则,令,解得,当时,;当时,,故当时,有最小值因此,当较短池壁为时,泳池的总维修费用最低故选A二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【题目详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.14、【解题分析】利用计算可得出数列的通项公式.【题目详解】当时,;而不适合上式,.故答案:.15、4【解题分析】由基本不等式及正实数、满足,可得的最大值.【题目详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.16、【解题分析】求出两圆的圆心坐标,再利用两点式求出直线方程,再化成一般式即可【题目详解】解:圆,即,两圆的圆心为:和,这两圆的连心线方程为:,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)m值为或.【解题分析】(1)利用判别式直接求解;(2)用“设而不求法”表示出,即可求出m.【小问1详解】联立,消去y可得.因为直线与椭圆相切,所以,解得:.【小问2详解】设.联立,消去y可得.所以,,所以.又由,可得.所以.因为,所以,解得,所以实数m的值为或.18、(1)分布列见解析(2)甲的试验操作能力较强,理由见解析【解题分析】(1)设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,计算出两个随机变量在不同取值下的概率,可得出这两个随机变量的概率分布列;(2)计算出、、、的值,比较、的大小,以及、的大小,由此可得出结论.【小问1详解】解:设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正确加工完成零件数的概率分布列如下表所示:,,,,所以,考生乙正确加工完成零件数的概率分布列如下表所示:【小问2详解】解:,,,,所以,,从做对题的数学期望分析,两人水平相当;从通过考查的概率分析,甲通过的可能性大,因此可以判断甲的试验操作能力较强.19、(1)(2)X01234p期望为.【解题分析】(1)求出甲、乙两班级的出场序号中均为偶数的概率,进而求出答案;(2)求出X的可能取值及相应的概率,写出分布列,求出期望值.【小问1详解】由题意得:甲、乙两班级的出场序号中均为偶数的概率为,故甲、乙两班级的出场序号中至少有一个为奇数的概率;【小问2详解】X的可能取值为0,1,2,3,4,,,,故分布列为:X01234p数学期望为20、(Ⅰ)单调递减区间为,单调递增区间为;最小值为,无最大值;(Ⅱ)证明见解析【解题分析】(Ⅰ)根据导函数的正负即可确定单调区间,由单调性可得最值点;(Ⅱ)构造函数,利用导数可确定单调性,结合的正负可确定的零点的范围,进而得到结论.【题目详解】(Ⅰ)由题意得:定义域为,,当时,;当时,;的单调递减区间为,单调递增区间为的最小值为,无最大值(Ⅱ)设,则,令得:当时,;当时,,在上单调递增;在上单调递减由(Ⅰ)知:,可得:,,可得:,即又,当时,,即当时,【题目点拨】思路点睛:本题考查导数在研究函数中的应用,涉及到函数单调性和最值的求解、利用导数证明不等式等知识;利用导数证明不等式的关键是能够通过移项构造的方式,构造出新的函数,通过的单调性,结合零点所处的范围可分析得到结果.21、(1)(2)【解题分析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【题目详解】(1)由已知得,,解得,又,所以椭圆的方程为(2)设直线的方程为,由得,①设、的坐标分别为,(),中点为,则,,因为是等腰△的底边,所以所以的斜率为,解得,此时方程①为解得,,所以,,所以,此时,点到直线:距离,所以△的面积考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离.【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市场调研报告撰写模板指南
- 信用安检面试题库专业指导:不同岗位的面试策略
- 控制技术综合试题及答案
- 技术开发试题及答案
- 首尔兼职面试经典题库:各类职位的求职策略
- 游戏开发面试实战:经典游戏架构面试题目及答案
- 学校水电安全知识培训课件
- 卓越职场面试技巧大全全系列题目及答案
- 国金证券面试题库精粹:精英之路的关键一步
- 红十字面试常见问题及答案解析
- 2025年高考化学四川卷试题答案解读及备考指导(精校打印)
- 拍卖合同范本大全2025年
- 2025企业级AI Agent(智能体)价值及应用报告
- 脑机接口与教育心理学的未来
- 班主任常规管理实施策略
- 【高考真题】2025年高考英语真题试卷(北京卷)(含答案)
- 展览会布展工程质量保证措施
- 危险化学品应急演练计划
- 2025秋部编版(2024)八年级上册语文上课课件 第六单元 阅读综合实践
- 单元整体设计下教、学、评一体化的实施策略
- DB32T 5124.3-2025 临床护理技术规范 第3部分:成人危重症患者有创动脉血压监测
评论
0/150
提交评论