河南省九师联盟2024学年数学高三第一学期期末复习检测模拟试题含解析_第1页
河南省九师联盟2024学年数学高三第一学期期末复习检测模拟试题含解析_第2页
河南省九师联盟2024学年数学高三第一学期期末复习检测模拟试题含解析_第3页
河南省九师联盟2024学年数学高三第一学期期末复习检测模拟试题含解析_第4页
河南省九师联盟2024学年数学高三第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省九师联盟2024学年数学高三第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则A. B. C. D.2.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.3.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定4.函数在上的大致图象是()A. B.C. D.5.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.6.已知角的终边经过点,则的值是A.1或 B.或 C.1或 D.或7.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限8.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面 B.C.当时,平面 D.当m变化时,直线l的位置不变9.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.411.设,满足,则的取值范围是()A. B. C. D.12.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____.14.已知命题:,,那么是__________.15.若实数x,y满足不等式组x+y-4≤0,2x-3y-8≤0,x≥1,则目标函数16.函数过定点________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、、三点,求线段的长.18.(12分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点.(1)写出曲线C的一般方程;(2)求的最小值.19.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.21.(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费.(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;(Ⅲ)在满足(Ⅱ)的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.22.(10分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,,,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.2、A【解题分析】

先根据奇函数求出m的值,然后结合单调性求解不等式.【题目详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【题目点拨】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.3、A【解题分析】

利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【题目详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【题目点拨】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题4、D【解题分析】

讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【题目详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【题目点拨】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.5、C【解题分析】

先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【题目详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【题目点拨】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.6、B【解题分析】

根据三角函数的定义求得后可得结论.【题目详解】由题意得点与原点间的距离.①当时,,∴,∴.②当时,,∴,∴.综上可得的值是或.故选B.【题目点拨】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可.7、D【解题分析】

利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【题目详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【题目点拨】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.8、C【解题分析】

根据线面平行与垂直的判定与性质逐个分析即可.【题目详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【题目点拨】本题考查直线与平面的位置关系.属于中档题.9、C【解题分析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.10、D【解题分析】

用去换中的n,得,相加即可找到数列的周期,再利用计算.【题目详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【题目点拨】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.11、C【解题分析】

首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【题目详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【题目点拨】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.12、C【解题分析】

根据三视图还原为几何体,结合组合体的结构特征求解表面积.【题目详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【题目点拨】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.【题目详解】解:根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,即方程在区间上有解,设函数,其导数,又由,可得:当时,为减函数,当时,为增函数,故函数有最小值,又由;比较可得:,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是;故答案为:;【题目点拨】本题利用导数研究函数在某区间上最值求参数的问题,函数零点问题的拓展.由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.14、真命题【解题分析】

由幂函数的单调性进行判断即可.【题目详解】已知命题:,,因为在上单调递增,则,所以是真命题,故答案为:真命题【题目点拨】本题主要考查了判断全称命题的真假,属于基础题.15、12【解题分析】

画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.【题目详解】根据约束条件画出可行域,如下图,由x+y-4=02x-3y-8=0,解得目标函数y=3x-z,当y=3x-z过点(4,0)时,z有最大值,且最大值为12.故答案为:12.【题目点拨】本题考查线性规划的简单应用,属于基础题.16、【解题分析】

令,,与参数无关,即可得到定点.【题目详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【题目点拨】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)();(2).【解题分析】

(1)化简得到直线方程为,再利用极坐标公式计算得到答案.(2)联立方程计算得到,,计算得到答案.【题目详解】(1)由消得,即,是过原点且倾斜角为的直线,∴的极坐标方程为().(2)由得,∴,由得∴,∴.【题目点拨】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和应用能力.18、(1);(2).【解题分析】

(1)将曲线的参数方程消参得到普通方程;(2)写出直线MN的参数方程,将参数方程代入曲线方程,并将其化为一个关于的一元二次方程,根据,结合韦达定理和余弦函数的性质,即可求出的最小值.【题目详解】(1)由曲线C的参数方程(是参数),可得,即曲线C的一般方程为.(2)直线MN的参数方程为(t为参数),将直线MN的参数方程代入曲线,得,整理得,设M,N对应的对数分别为,,则,当时,取得最小值为.【题目点拨】该题考查的是有关参数方程的问题,涉及到的知识点有参数方程向普通方程的转化,直线的参数方程的应用,属于简单题目.19、(1)不能;(2)①;②分布列见解析,.【解题分析】

(1)根据题目所给的数据可求2×2列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论.(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P=1﹣()3﹣()3,解出X的分布列及数学期望E(X)即可;【题目详解】(1)由图中表格可得列联表如下:非“环保关注者”是“环保关注者”合计男104555女153045合计2575100将列联表中的数据代入公式计算得K”的观测值,所以在犯错误的概率不超过0.05的前提下,不能认为是否为“环保关注者”与性别有关.(2)视频率为概率,用户为男“环保达人”的概率为.为女“环保达人”的概率为,①抽取的3名用户中既有男“环保达人”又有女“环保达人”的概率为;②的取值为10,20,30,40.,,,,所以的分布列为10203040.【题目点拨】本题考查了独立性检验的应用问题,考查了概率分布列和期望,计算能力的应用问题,是中档题目.20、(1)的极小值为,无极大值.(2)见解析.【解题分析】

(1)对求导,确定函数单调性,得到函数极值.(2)构造函数,证明恒成立,得到,,得证.【题目详解】(1)由题意知,,令,得,令,得.则在上单调递减,在上单调递增,所以的极小值为,无极大值.(2)当时,要证,即证.令,则,令,得,令,得,则在上单调递减,在上单调递增,所以当时,,所以,即.因为时,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论