六年级数学上册典型例题-第五单元圆的面积问题提高部分(原卷版)_第1页
六年级数学上册典型例题-第五单元圆的面积问题提高部分(原卷版)_第2页
六年级数学上册典型例题-第五单元圆的面积问题提高部分(原卷版)_第3页
六年级数学上册典型例题-第五单元圆的面积问题提高部分(原卷版)_第4页
六年级数学上册典型例题-第五单元圆的面积问题提高部分(原卷版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六年级数学上册典型例题系列之

第五单元圆的面积问题提高部分(原卷版)

编者的话:

《六年级数学上册典型例题系列》是基于教材知识点和常年考点

考题总结和编辑而成的,其优点在于选题典型,考点丰富,变式多样。

本专题是第五单元圆的面积问题提高部分,后续内容为《圆的面

积问题提高部分》。本部分内容是在《圆的面积问题基础部分》内容

基础上进行总结和编辑的,其内容主要以求不规则图形的面积为主,

共介绍了六种常用的求阴影部分面积的方法,题型上多考察图形题和

应用题,题目综合性较强,难度较大,建议作为重点部分讲解,共划

分为七个考点,欢迎使用。

(WH】—MWWW—,!_______________________

,-----------«―ma.

(MZJ曲一{■■■■■■•I

I-----—―Eft•例MUREA*

(■回WimiiHMWZSMt・Sl.S2.-\

一(Mt)EWAffiOR六UM方用.助的

M.

【考点一】圆的面积与羊吃草问题。

【方法点拨】

该题型关键是画出羊吃草的范围图,较复杂的问题是由多个不同部分的图形组

成,需要分开计算面积。

【典型例题1】

把一只羊拴在一块长8m,宽6m的长方形草地上,拴羊的绳长2m,那么这只羊

吃到草的最大面积是多少平方米?如果要使羊吃草的面积最小,应该将羊拴在这

个长方形草地的什么位置?

【典型例题2】

草场上有一个长20m,宽10m的关闭着的羊圈,在羊圈的一角用长30m的绳子拴

着一只羊(见右图),这只羊能够活动的范围有多大?

【对应练习1】

一只狗被拴在底座为边长3m的等边三角形建筑物的墙角上(如图),绳长是4m,

求狗所能到的地方的总面积。

【对应练习21

草场上有一个木屋,木屋的地基是边长3米的正方形,A是木屋的一角,在A点

有一木桩,在木桩上用6米长的绳子拴一匹马,这匹马的活动范围有多大?

解析:国出ZF意图,

【考点二】求阴影部分的面积一:四大基础衍生图形。

【方法点拨】

①“弓形":如图:

弓形一般不要求周长,主要求面积,弓形面积=扇形面积-三角形面积(除了半圆)

这里只给出圆心角是90。的弓形面积.

弯角的面积=正方形-扇形=S正-=r2-;仃2

③“谷子":如图:

谷形的面积就是两个完全相同的弓形面积的和.

22

谷子的面积=弓形面积x2=2s弓=2sH,-S正=5正—2S墩=:仃-r

④“金鱼型”:如图

鱼头等于鱼尾,鱼头加鱼尾等于弓形.

Sg=S筮=—7TT2--r2,Sa+S典量=5弓=-rTTT2——F2

【典型例题1】

如图,求阴影部分的面积。(单位:厘米)

2

【对应练习1】

如图,互相垂直的两条线段均为10,求阴影部分的面积。

【对应练习2】

如图,互相垂直的两条线段均为10,求阴影部分的面积。

【对应练习31

如图,互相垂直的两条线段均为4,求中间谷子部分的面积。

【对应练习4】

如图,求阴影部分的面积。

【考点三】求阴影部分的面积二:S阴影:S1+S2。

【方法点拨】

加法分割思路是把所求阴影部分面积分割成几块能用公式计算的规则图形(三

角形、正方形、长方形'平行四边形、梯形、圆'扇形),分别计算出面积,

并相加得出阴影部分的面积。

【典型例题1】

如图,求阴影部分的面积。(单位:cm)

6

【对应练习1】

求下面图形的面积。(单位:米)

【对应练习21

计算如图的面积。

【考点四】求阴影部分的面积三:S阴影二S整体-S空白。

【方法点拨】

减法拓展思路是把不规则图形阴影部分面积拓展到包含阴影部分的规则图形中

进行分析,通过计算这个规则图形的面积和规则图形中除阴影部分面积之外多

余的面积,运用“总的”减去“部分的”方法解得答案。

【典型例题1】

求阴影部分的面积。

【对应练习1】

边长为10米的正方形内的花园里,要在阴影部分种植玫瑰,种植玫瑰的面积有

多大?

【对应练习2】

求阴影部分的面积。

【对应练习3]

计算下面图形中阴影部分的面积。(单位:厘米)

【考点五】求阴影部分的面积四:拼接法。

【方法点拨】

在部分扇形半径相等的情况下,可以通过移动扇形,把扇形拼接成一个整体。

【典型例题】

如图,是一个边长为5厘米的等边三角形,其面积为15平方厘米,在三角形中

挖去三个同样的扇形,求剩下阴影部分的面积。

【对应练习1】

如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米)

【对应练习2]

如图,三个扇形的半径相等,求阴影部分的面积。(单位:厘米)

【对应练习3]

如图,图中四个等圆的周长都是50.24厘米,求阴影部分的面积。

【考点六】求阴影部分的面积五:割补法。

【方法点拨】

移拼、割补的思路是把不规则的阴影面积通过学习割补,使之变为一个面积大

小不变且能实施计算成面积相同的规则图形。

【典型例题】

求图中阴影部分的面积(单位:厘米)。

【对应练习1】

求下面图形中阴影部分的面积(单位:厘米)。

【对应练习21

求下面图形中阴影部分的面积(单位:厘米)

【对应练习3]

求图中阴影部分的面积(单位:厘米)。

【对应练习3]

计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

【对应练习4]

已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米,求阴影部分的

面积。

【对应练习5】

有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图)。

图中黑点是这些圆的圆心。如果圆周率是3.1416,那么花瓣图形的面积是多少

平方厘米?

【考点七】求阴影部分的面积六:圆与长方形、正方形的结合。

【方法点拨】

注意分析长方形、正方形面积公式与圆的面积的相同之处。

【典型例题】

图中圆的周长是12.56cm,圆的面积正好等于长方形的面积,求阴影部分的面积。

【对应练习1】

图中正方形的面积是6平方厘米,求圆的面积。

【对应练习2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论