陕西省西安三中2022-2023学年高一数学第二学期期末教学质量检测模拟试题含解析_第1页
陕西省西安三中2022-2023学年高一数学第二学期期末教学质量检测模拟试题含解析_第2页
陕西省西安三中2022-2023学年高一数学第二学期期末教学质量检测模拟试题含解析_第3页
陕西省西安三中2022-2023学年高一数学第二学期期末教学质量检测模拟试题含解析_第4页
陕西省西安三中2022-2023学年高一数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列中,,且,则数列前2019项和为()A. B. C. D.2.某林区改变植树计划,第一年植树增长率200%,以后每年的植树增长率都是前一年植树增长率的12,若成活率为100%,经过4A.14 B.454 C.63.函数f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.324.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.5.若直线与圆有公共点,则实数的取值范围是()A. B. C. D.6.点到直线(R)的距离的最大值为A. B. C.2 D.7.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A. B.C. D.8.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.9.已知正数、满足,则的最小值为()A. B. C. D.10.函数的部分图象如图所示,则的单调递减区间为A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图象如图所示,则的值为_________.12.已知,且,则的取值范围是____________.13.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值为________.14.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.15.某工厂生产三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为的样本,样本中种型号产品有16件,那么此样本的容量=16.已知,向量的夹角为,则的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值;(2)求的值.18.已知数列的前项和为,.(1)求数列的通项公式;(2)设,求数列的前项和.19.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.(1)若点的坐标为,求椭圆的方程及的值;(2)若,求椭圆的离心率的取值范围.20.如图,在中,,点在边上,(1)求的度数;(2)求的长度.21.知两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求当m为何值时,l1与l2:(1)垂直;(2)平行,并求出两平行线间的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由,可得,化为:,利用“累加求和”方法可得,再利用裂项求和法即可得解.【详解】解:∵,∴,整理得:,∴,又∴,可得:.则数列前2019项和为:.故选B.【点睛】本题主要考查了数列递推关系、“累加求和”方法、裂项求和,考查了推理能力、转化能力与计算能力,属于中档题.2、B【解析】

由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为12n-2,则第n【详解】由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为1则第n年的林区的树木数量为an∴a1=3a0,a因此,经过4年后,林区的树木量是原来的树木量的454【点睛】本题考查数列的性质和应用,解题的关键在于建立数列的递推关系式,然后逐项进行计算,考查分析问题和解决问题的能力,属于中等题.3、B【解析】

由题得g(x构造h(x)=g(x)-f(x)=x2-2x+2∈【详解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值为22.故选:B.【点睛】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.4、A【解析】

先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、C【解析】由题意得圆心为,半径为.圆心到直线的距离为,由直线与圆有公共点可得,即,解得.∴实数a取值范围是.选C.6、A【解析】

把直线方程化为,得到直线恒过定点,由此可得点P到直线的距离的最大值就是点P到定点的距离,得到答案.【详解】由题意,直线可化为,令,解得,即直线恒过定点,则点P到直线的距离的最大值就是点P到定点的距离为:,故选A.【点睛】本题主要考查了直线方程的应用,其中解答中把直线方程化为,得出直线恒过定点是解答本题的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.7、C【解析】

利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.8、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9、B【解析】

由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.10、D【解析】

根据图象可得最小正周期,求得;利用零点和的符号可确定的取值;令,解不等式即可求得单调递减区间.【详解】由图象可知:又,,由图象可知的一个可能的取值为令,,解得:,即的单调递减区间为:,本题正确选项:【点睛】本题考查利用图象求解余弦型函数的解析式、余弦型函数单调区间的求解问题;关键是能够灵活应用整体对应的方式来求解解析式和单调区间,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据图像可得,根据0所在位置,处于函数的单调减区间,即可得解.【详解】由图可得:,或由于0在函数的单调减区间内,所以.故答案为:【点睛】此题考查根据三角函数的图象求参数的取值,常用代入法求解,判定初相的取值时,根据图象结合单调性取值.12、【解析】

利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【点睛】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.13、-3【解析】试题分析:由两直线平行可得:,经检验可知时两直线重合,所以.考点:直线平行的判定.14、(1)【解析】

利用线线平行的传递性、线面垂直的判定定理判定.【详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【点睛】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.15、1.【解析】

解:A种型号产品所占的比例为2/(2+3+5)=2/10,16÷2/10=1,故样本容量n=1,16、【解析】

将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

试题分析:(1)利用正切的两角和公式求的值;(2)利用第一问的结果求第二问,但需要先将式子化简,最后变形成关于的式子,需要运用三角函数的倍角公式将化成单角的三角函数,然后分子分母都除以,然后代入的值即可.试题解析:(1)由(2)考点:1.正切的两角和公式;2.正余弦的倍角公式.18、(1);(2).【解析】

(1)由递推公式,再递推一步,得,两式相减化简得,可以判断数列是等差数列,进而可以求出等差数列的通项公式;(2)根据(1)和对数的运算性质,用裂项相消法可以求出数列的前项和.【详解】解:(1)由知所以,即,从而所以,数列是以2为公比的等比数列又可得,综上所述,故.(2)由(1)可知,故,综上所述,所以,故而所以.【点睛】本题考查了已知递推公式求数列通项公式问题,考查了等差数列的判断以及等差数列的通项公式,考查了用裂项相消法求数列前项和问题,考查了数学运算能力.19、(1);(2)【解析】

(1)把的坐标代入方程得到,结合解出后可得标准方程.求出直线的方程,联立椭圆方程和直线方程后可求的坐标,故可得的值.(2)因,故可用表示的坐标,利用它在椭圆上可得与的关系,化简后可得与离心率的关系,由的范围可得的范围.【详解】(1)因为垂直于轴,且点的坐标为,所以,,解得,,所以椭圆的方程为.所以,直线的方程为,将代入椭圆的方程,解得,所以.(2)因为轴,不妨设在轴上方,,.设,因为在椭圆上,所以,解得,即.(方法一)因为,由得,,,解得,,所以.因为点在椭圆上,所以,即,所以,从而.因为,所以.解得,所以椭圆的离心率的取值范围.【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.圆锥曲线中的离心率的计算或范围问题,关键是利用题设条件构建关于的一个等式关系或不等式关系,其中不等式关系的构建需要利用题设中的范围、坐标的范围、几何量的范围或点的位置等.20、(1)(2)【解析】

(1)中直接由余弦定理可得,然后得到的度数;(2)由(1)知,在中,由正弦定理可直接得到的值.【详解】解:(1)在中,,,由余弦定理,有,在中,;(2)由(1)知,在中,由正弦定理,有,.【点睛】本题主要考查正弦定理和余弦定理的应用,考查了计算能力,属于基础题.21、(1)m(2)m=﹣7,距离为【解析】

(1)由题意利用两条直线垂直的性质,求出m的值.(2)由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论