多传感器数据融合_第1页
多传感器数据融合_第2页
多传感器数据融合_第3页
多传感器数据融合_第4页
多传感器数据融合_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选公文范文,管理类,工作总结类,工作计划类文档,欢迎阅读下载精选公文范文,管理类,工作总结类,工作计划类文档,欢迎阅读下载精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载~精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载~#~相应的附加规则。 神经网络具有很强的容错性以及自学习、自组织及自适应能力,能够模拟复杂的非线性映射。在多传感器系统中,各信息源所提供的环境信息都具有一定程度的不确定性,对这些不确定信息的融合过程实际上是一个不确定性推理过程。神经网络根据当前系统所接受的样本相似性确定分类标准,主要表现在网络的权值分布上,同时,可以采用神经网络特定的学习算法来获取知识,得到不确定性推理机制。利用神经网络的信号处理能力和自动推理功能来实现多传感器数据融合,缺点是计算量大。 遗传算法是一种基于自然选择和自然遗传的全局优化算法。特点是采用群体方式对目标函数空间进行多线索的并行搜索,不会陷入局部极小点;只需可行解目标函数的值,而不需其他信息,对目标函数的连续性、可微性没有要求,使用方便;解的选择和产生用概率方式,因此,具有强的适应能力和鲁棒性。缺点在于收敛速度慢、易陷入局部最优。 模糊积分的实质就是求得在客观证据对决策假设的实际估计与其期望值间的最大一致性。模糊积分是定义在模糊测度基础上的一种非线性函数,它具有融合多元信息的能力,常用的模糊积分有Sugeno积分和Choquet积分,主要用于决策支持、自动控制等。Sugeno的模糊积分是定义在模糊测度上的非线性函数,特点是直接排除了次要因素的影响,与加权平均相比,强化了主要因素的作用,但却忽视次要因素的影响。Choquet模糊积分考虑了各种影响因素,以避免Sugeno模糊积分的缺陷,而广义Choquet模糊积分及其在信息融合中的应用近年来得到了较广泛的关注。 综上所述,单一的数据融合算法具有一定的局限性,将多种算法进行优势集成已逐渐成为数据融合算法的研究热点。 遗传算法和模糊聚合相结合 遗传算法是一种并行化算法,可较好地解决多参数优化问题,且其算子能更好的模拟模糊关系,从而达到较高精度。将其与模糊理论相结合可在信息源的可靠性、信息的冗余、互补性以及进行融合的分级结构不确定情况下,以近似最优方式对传感器数据进行融合。 模糊系统与神经网络相结合 神经网络对环境的变化具有较强的自适应能力和自学习能力,但从系统建模的角度而言,它采用的是典型的黑箱学习模式。当学习完成后,神经网络所获得 的输入/输岀关系难以用通俗的方式表示。而模糊系统则采用简单的如果?则?”规则,但自动生成和调整隶属度函数和模糊规则是个难题。若将两者结合取长补短,则可提高整个系统的学习能力和表达能力。 5结束语 数据融合技术是一门跨学科的综合理论和方法尚处在不断的发展和完善过程中。随着研究者的不断努

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论