2022-2023学年合肥市重点中学数学高一下期末预测试题含解析_第1页
2022-2023学年合肥市重点中学数学高一下期末预测试题含解析_第2页
2022-2023学年合肥市重点中学数学高一下期末预测试题含解析_第3页
2022-2023学年合肥市重点中学数学高一下期末预测试题含解析_第4页
2022-2023学年合肥市重点中学数学高一下期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图所示的几何体是由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为质点的圆锥面得到,现用一个垂直于底面的平面去截该几何体、则截面图形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)2.若函数f(x)=loga(x2–ax+2)在区间(0,1]上单调递减,则实数a的取值范围是()A.[2,3) B.(2,3) C.[2,+∞) D.(2,+∞)3.已知函数在一个周期内的图象如图所示.则的图象,可由函数的图象怎样变换而来(纵坐标不变)()A.先把各点的横坐标缩短到原来的倍,再向左平移个单位B.先把各点的横坐标缩短到原来的倍,再向右平移个单位C.先把各点的横坐标伸长到原来的2倍,再向左平移个单位D.先把各点的横坐标伸长到原来的2倍,再向右平移个单位4.圆的半径为()A.1 B.2 C.3 D.45.如图所示,在中,点D是边的中点,则向量()A. B.C. D.6.已知数列的前项和,那么()A.此数列一定是等差数列 B.此数列一定是等比数列C.此数列不是等差数列,就是等比数列 D.以上说法都不正确7.函数在区间(,)内的图象是()A. B. C. D.8.已知三棱锥,若平面,,,,则三棱锥外接球的表面积为()A. B. C. D.9.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元10.过点(1,0)且与直线垂直的直线方程是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆,直线l被圆所截得的弦的中点为.则直线l的方程是________(用一般式直线方程表示).12.函数的部分图象如图所示,则函数的解析式为______.13.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。14.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)15.已知为所在平面内一点,且,则_____16.函数的零点的个数是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直角梯形中,,,,,,过作,垂足为,分别为的中点,现将沿折叠,使得.(1)求证:(2)在线段上找一点,使得,并说明理由.18.为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制).下面是两个小组的打分数据:第一小组第二小组(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由.(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由.(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:食材的加热时间(单位:)营养成分保留百分比在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义.附注:参考数据:,.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.19.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求证:平面ABCD;(II)求证:平面ACF⊥平面BDF.20.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.21.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据圆锥曲线的定义和圆锥的几何特征,分截面过旋转轴时和截面不过旋转轴时两种情况,分析截面图形的形状,最后综合讨论结果,可得答案.【详解】根据题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时(1)符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时(4)符合条件;故截面图形可能是(1)(4);故选:D.【点睛】本题考查的知识点是旋转体,圆锥曲线的定义,关键是掌握圆柱与圆锥的几何特征.2、A【解析】

函数为函数与的复合函数,复合函数的单调性是同则增,异则减,讨论,,结合二次函数的单调性,同时还要保证真数恒大于零,由二次函数的图象和性质列不等式即可求得的范围.【详解】∵函数在区间上为单调递减函数,∴时,在上为单调递减函数,且在上恒成立,∴需在上的最小值,且对称轴,∴,当时,在上为单调递增函数,不成立,综上可得的范围是,故选:A.【点睛】本题考查了对数函数的图象和性质,二次函数图象和性质,复合函数的定义域与单调性,不等式恒成立问题的解法,转化化归的思想方法,属于中档题.3、B【解析】

根据图象可知,根据周期为知,过点求得,函数解析式,比较解析式,根据图像变换规律即可求解.【详解】由在一个周期内的图象可得,,解得,图象过点,代入解析式得,因为,所以,故,因为,将函数图象上点的横坐标变为原来的得,再向右平移个单位得的图象,故选B.【点睛】本题主要考查了由部分图像求解析式,图象变换规律,属于中档题.4、A【解析】

将圆的一般方程化为标准方程,确定所求.【详解】因为圆,所以,所以,故选A.【点睛】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.5、D【解析】

根据向量线性运算法则可求得结果.【详解】为中点本题正确选项:【点睛】本题考查根据向量线性运算,用基底表示向量的问题,属于常考题型.6、D【解析】

利用即可求得:,当时,或,对赋值2,3,选择不同的递推关系可得数列:1,3,-3,…,问题得解.【详解】因为,当时,,解得,当时,,整理有,,所以或若时,满足,时,满足,可得数列:1,3,-3,…此数列既不是等差数列,也不是等比数列故选D【点睛】本题主要考查利用与的关系求,以及等差等比数列的判定.7、D【解析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.8、B【解析】

根据题意画出三棱锥的图形,将其放入一个长方体中,容易知道三棱锥的外接球半径,利用球的表面积公式求解即可.【详解】根据题意画出三棱锥如图所示,把三棱锥放入一个长方体中,三棱锥的外接球即这个长方体的外接球,长方体的外接球半径等于体对角线的一半,所以三棱锥的外接球半径,三棱锥的外接球的表面积.故选:B【点睛】本题主要考查三棱锥的外接球问题,对于三棱锥三条棱有两两垂直的情况,可以考虑将其放入一个长方体中求解外接球半径,属于基础题.9、B【解析】∵,∵数据的样本中心点在线性回归直线上,

回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,

∴广告费用为6万元时销售额为9.4×6+9.1=65.5,

故选B.10、D【解析】

设出直线方程,代入点求得直线方程.【详解】依题意设所求直线方程为,代入点得,故所求直线方程为,故选D.【点睛】本小题主要考查两条直线垂直的知识,考查直线方程的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将圆的方程化为标椎方程,找出圆心坐标与半径,根据垂径定理得到直线与直线垂直,根据直线的斜率求出直线的斜率,确定出直线的方程即可.【详解】由已知圆的方程可得,所以圆心,半径为3,由垂径定理知:直线直线,因为直线的斜率,所以直线的斜率,则直线的方程为,即.故答案为:.【点睛】本题考查直线与圆的位置关系,考查逻辑思维能力和运算能力,属于常考题.12、【解析】

根据三角函数图象依次求得的值.【详解】由图象可知,,所以,故,将点代入上式得,因为,所以.故.故答案为:【点睛】本小题主要考查根据三角函数的图象求三角函数的解析式,属于基础题.13、80【解析】

由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【点睛】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.14、12.2【解析】

先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.15、【解析】

将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.16、【解析】

在同一直角坐标系内画出函数与函数的图象,利用数形结合思想可得出结论.【详解】在同一直角坐标系内画出函数与函数的图象如下图所示:由图象可知,函数与函数的图象的交点个数为,因此,函数的零点个数为.故答案为:.【点睛】本题考查函数零点个数的判断,在判断函数的零点个数时,一般转化为对应方程的根,或转化为两个函数图象的交点个数,考查数形结合思想的应用,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】试题分析:(Ⅰ)由已知得:面面;(II)分析可知,点满足时,面BDR⊥面BDC.

理由如下先计算再求得,

,再证面面面.试题解析:(Ⅰ)由已知得:面面

(II)分析可知,点满足时,面BDR⊥面BDC.

理由如下:取中点,连接

容易计算在中∵可知,

∴在中,

又在中,为中点面,

∴面面.18、(1)中位数为,平均数为,中位数更适合描述第一小组打分的情况;(2)由可知第二小组的打分人员更像是由营养专家组成;(3)散点图见解析;回归直线为:;的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少.【解析】

(1)将第一小组打分按从小到大排序,根据中位数和平均数的计算方法求得中位数和平均数;由于存在极端数据,可知中位数更适合描述第一小组打分情况;(2)分别计算两组数据的方差,由可知第二小组打分相对集中,其更像是由营养专家组成;(3)由已知数据画出散点图;利用最小二乘法计算可得回归直线;根据的含义,可确定斜率的含义.【详解】(1)第一小组的打分从小到大可排序为:,,,,,,,则中位数为:平均数为:可发现第一小组中出现极端数据,会造成平均数偏低则由以上算得的两个数字特征可知,选择中位数更适合描述第一小组打分的情况.(2)第一小组:平均数为方差:第二小组:平均数:方差:可知,,第一小组的方差远大于第二小组的方差第二小组的打分相对集中,故第二小组的打分人员更像是由营养专家组成的(3)由已知数据,得散点图如下,,且,则关于的线性回归方程为:回归方程中斜率的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少.【点睛】本题考查计算数据的中位数、平均数和方差、根据方差确定数据的波动性、回归直线的求解问题;考查学生对于统计中的公式的掌握情况,对于学生的计算和求解能力有一定要求,属于常考题型.19、(Ⅰ)见解析;(Ⅱ)见解析.【解析】(1)添加辅助线,通过证明线线平行来证明线面平行.(2)通过证明线面垂直面,来证明面面.(Ⅰ)证明:如图,过点作于,连接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四边形为平行四边形.∴.∵平面,平面,∴平面.(Ⅱ)证明:面,,又四边形是菱形,,又,面,又面,从而面面.点晴:本题考查的是空间线面的平行和垂直关系.第一问要考查的是线面平行,通过先证明,得四边形为平行四边形.证得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论