版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省秦皇岛市私立渤海中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知两点,点P为坐标平面内的动点,满足=0,则动点到两点、的距离之和的最小值为(
)A.4 B.5 C.6 D.参考答案:B2.如图所示,半径为1的圆O是正方形MNPQ的内切圆,将一颗豆子随机地扔到正方形MNPQ内,用A表示事件“豆子落在圆O内”,B表示事件“豆子落在扇形OEF(阴影部分)内”,则()A. B. C. D.参考答案:B【分析】利用几何概型先求出,,再由条件概率公式求出.【详解】如图所示,半径为1的圆O是正方形MNPQ的内切圆,将一颗豆子随机地扔到正方形MNPQ内,用A表示事件“豆子落在圆O内”,B表示事件“豆子落在扇形阴影部分内”,则,,.故选:B.【点睛】本题考查概率的求法,考查几何概型、条件概率能等基础知识,考查运算求解能力,是基础题.3.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4
B.2
C.1
D.参考答案:A4.在极坐标系中,曲线4sin(-)关于(
)A.直线=轴对称
B.直线=轴对称C.点(2,)中心对称
D.极点中心对称参考答案:B略5.已知平面与平面相交,直线,则(
)A.内必存在直线与平行,且存在直线与垂直B.内不一定存在直线与平行,不一定存在直线与垂直C.内不一定存在直线与平行,但必存在直线与垂直D.内必存在直线与平行,不一定存在直线与垂直参考答案:C试题分析:作两个相交平面,交线为,使得直线,假设内一定存在直线与平行,因为,而,所以直线,而,所以,这与平面与平面相交不一定垂直矛盾,所以内不一定存在直线与平行,因为直线,,所以,所以在内不一定存在直线与平行,但必存在直线与垂直,故选C.考点:线面位置关系的判定与证明.6.随机变量的概率分布列规律为其中为常数,则的值为(
).A.
B.
C.
D.参考答案:D略7.△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=b,A=2B,则cosB=()A. B. C. D.参考答案:B【考点】正弦定理的应用.【分析】通过正弦定理得出sinA和sinB的方程组,求出cosB的值.【解答】解:∵△ABC中,,∴根据正弦定理得∴故选B.8.过抛物线的焦点作直线交抛物线于A、B两点,若线段AB中点的横坐标为3,则等于
A.10B.8C.6D.4参考答案:B略9.直线和直线的位置关系为()A、平行,
B、垂直,C、相交但不垂直,
D、以上都不对参考答案:C10.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是()A.0.62 B.0.68 C.0.02 D.0.38参考答案:C【考点】几何概型.【分析】根据所给的,质量小于4.8g的概率是0.3,质量小于4.85g的概率是0.32,利用互斥事件的概率关系写出质量在[4.8,4.85)g范围内的概率.【解答】解:设一个羽毛球的质量为ξg,则根据概率之和是1可以得到P(ξ<4.8)=0.3,P(ξ<4.85)=0.32,∴P(4.8≤ξ<4.85)=0.32﹣0.3=0.02.故选C二、填空题:本大题共7小题,每小题4分,共28分11.已知函数既存在极大值又存在极小值,则实数的取值范围是
.参考答案:略12.已知关于的不等式的解集为则关于的不等式的解集为_______参考答案:略13.函数的图像恒过定点A,若点A在直线上,其中则得最小值为
.参考答案:214.已知双曲线
(a>0,b>0)的一条渐近线方程为,则此双曲线的离心率e=
▲
.参考答案:略15.已知t>0,函数f(x)=,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是.参考答案:(3,4)【考点】函数零点的判定定理.【分析】若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则方程f(x)﹣1=0和f(x)﹣1=t各有三个解,即函数f(x)的图象与y=1和y=t+1各有三个零点,进而得到答案.【解答】解:∵函数f(x)=,∴函数f′(x)=,当x<,或x<t时,f′(x)>0,函数为增函数,当<x<t时,f′(x)<0,函数为减函数,故当x=时,函数f(x)取极大值,函数f(x)有两个零点0和t,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则方程f(x)﹣1=0和f(x)﹣1=t各有三个解,即函数f(x)的图象与y=1和y=t+1各有三个零点,由y|x=t==,故,=(t﹣3)(2t+3)2>0得:t>3,故不等式的解集为:t∈(3,4),故答案为:(3,4)16.(4分)已知函数f(x)=,对任意的x∈[0,1]恒有f(x+a)≤f(x)成立,则实数a的取值范围是_________.参考答案:17.命题“若,则”的否命题是:__________________.参考答案:若,则.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,AB是的直径,PA垂直于所在平面,C是圆周上部同于A、B的一点,且(1)求证:平面平面;(2)求二面角的大小。参考答案:
19.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足<0.(1)若a=1且p∧q为真,求实数x的取值范围;(2)若?q是?p的充分不必要条件,求实数a的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】(1)分别求出关于p,q的不等式,根据p真且q真取交集即可;(2)由p是q的充分不必要条件,得到关于a的不等式,解出即可.【解答】解:(1)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由实数x满足得﹣2<x<3,即q为真时实数x的取值范围是﹣2<x<3.若p∧q为真,则p真且q真,所以实数x的取值范围是1<x<3.﹣﹣﹣﹣﹣(2)?q是?p的充分不必要条件,即p是q的充分不必要条件由a>0,及3a≤3得0<a≤1,所以实数a的取值范围是0<a≤1.﹣﹣﹣﹣﹣﹣20.在直角坐标系xOy中,曲线C1的参数方程为(为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求的最小值及此时P的直角坐标.参考答案:(1)的普通方程为:;的直角坐标方程为直线;(2)的最小值为.【分析】(1)消参数可得的普通方程;将的极坐标方程展开,根据,即可求得的直角坐标方程。(2)设,利用点到直线距离公式表示出点P到直线的距离,根据三角函数的性质即可求得最小值,将代入参数方程即可求得P点坐标。【详解】(1)曲线的参数方程为(为参数),移项后两边平方可得,即有椭圆;曲线的极坐标方程为,即有,由,,可得,即有的直角坐标方程为直线;(2)设,由到直线的距离为当时,的最小值为,此时可取,即有.【点睛】本题考查了参数方程与普通方程、极坐标与普通方程的转化,参数方程在求取值范围中的应用,属于中档题。21.(本题满分9分)已知点在矩形的边上,,点在边上且,垂足为,将沿边折起,使点位于位置,连接得四棱锥.(Ⅰ)求证:;(Ⅱ)若且平面平面,求四棱锥的体积.
参考答案:(1)由题意知,,.又因为,(2)平面平面,平面平面.又有面积法知且22.(本小题满分12分)如图所示,矩形ABCD的边AB=,BC=2,PA⊥平面ABCD,PA=2,现有数据:①;②;③;建立适当的空间直角坐标系,(I)当BC边上存在点Q,使PQ⊥QD时,可能取所给数据中的哪些值?请说明理由;(II)在满足(I)的条件下,若取所给数据的最小值时,这样的点Q有几个?若沿BC方向依次记为,试求二面角的大小.
参考答案:解:(I)建立如图所示的空间直角坐标系,则各点坐标分别为:
,,,,
设(0≤x≤2),…2分∵∴由P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水土保持治理工安全教育强化考核试卷含答案
- 电商咨询师风险评估与管理评优考核试卷含答案
- 注水泵工操作能力强化考核试卷含答案
- 多膛炉焙烧工操作竞赛考核试卷含答案
- 起重装卸机械智能控制员安全风险测试考核试卷含答案
- 老年癫痫手术麻醉的脑电监测应用
- 2026山东省青岛市城阳区教育系统招聘高层次紧缺急需人才180人备考题库附答案详解
- 2026四川长虹物业服务有限责任公司绵阳分公司招聘环境专员兼行政助理岗位1人备考题库及答案详解(新)
- 虚拟现实技术的未来展望
- 2025河北张家口市康保县二人台艺术团第二次招聘专业演职人员5人备考题库含答案详解
- 《认识时钟》大班数学教案
- 新疆维吾尔自治区伊犁哈萨克自治州2023-2024学年八年级下学期期中数学试题
- 人工智能在专业通信领域的应用
- T-CI 178-2023 高大边坡稳定安全智能监测预警技术规范
- THHPA 001-2024 盆底康复管理质量评价指标体系
- 伤口的美容缝合减少瘢痕的形成
- MSOP(测量标准作业规范)测量SOP
- 颅鼻眶沟通恶性肿瘤的治疗及护理
- 人教版四年级《上册语文》期末试卷(附答案)
- 四川山体滑坡地质勘察报告
- 青岛啤酒微观运营
评论
0/150
提交评论