chapter 5 3 4 first and second fundamantal theorem微积分第一基本定理_第1页
chapter 5 3 4 first and second fundamantal theorem微积分第一基本定理_第2页
chapter 5 3 4 first and second fundamantal theorem微积分第一基本定理_第3页
chapter 5 3 4 first and second fundamantal theorem微积分第一基本定理_第4页
chapter 5 3 4 first and second fundamantal theorem微积分第一基本定理_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.3TheFirstFundamentalTheoremof a,b],then bexistsanditsvariablewouldbedenotedast,suchas ft"x˛a,

subintervala,x, xthevalue

ft

correspondstothevalueofx

x=

ftisanewfunctiondefinedbyfona,bandnamedtheAccumulationfunctionofforUpper-limitfunctionoff.yf

yox1x fyox1xxx=x

ftx12=0tdt=2x12

˛TheoremAFirstFundamentalTheoremofLetlet

becontinuousontheclosedinterval[a,b]andbea(variable)pointin(a,b).Then axax

f(t)dt=f(x)Thatmeanstheaccumulationfunctionantiderivativeoff(x)

f

isExample

(1)y=xet2 y=1ln

,find

= =

=-ln=-

dx Solution:BytheFirstFundamentalTheoremofdxt3dt

Example

ddx

242t.nx

ucosuduSolution:NotethefactthatxisthelowerlimitandusetheFundamentalTheoremofd4tan

ucosudu=d-xtan2ucosudu

dx =-dxtan2ucosudu

ProofoftheFirstFundamentalTheoremofx

LetG(x)=

f(t)dtxG(x+h)-G(x)=

f(t)dt-

f

f(t)dt

f(t)dt-

f(t)dt

f Letf(1)= f(t),f(t2)= f t˛[x, t˛[1)h (1)h f(t)£G(x+h)-G(x)£f(t (1)2)=hfi Example

t u BytheFirstFundamentalTheoremofCalculus,notethattheupperlimitisx2 ratherthanx.uLetu=

,F(u)

t theChainrule,weF[u(x)]=(u)u=u3t =(3u-1)2x=2x(3x2-CorollaryoftheFundamentalTheoremofff˛C[a,b],gandharebothdifferentiablex,andg(x),h(x)˛[a,b]¢h(fg(x)g(x)h(x)(x). Letcbeafixedpointin

h(

f(t)dt= f(t)dt+h(

f(t)dt= f(t)dt-

fuLetF(u)=u

f(t)dt,andu=g(x),UsingtheChainruleandtheFirstFundamentalTheoremofCalculus,wegetcc

f(t)dt

Fg(x)=(u)g(x)(x)=[g(x)]g(x=cc

x)f

¢=f[h(x)]h(x).¢

g(x)fh(

g(xg(x)

h(x(x).ExampleLetf(x)=

tan2

(t2-1)dt.

(x)x (x)x)-t=(tan2x-1)sec2x-2x(x4-txExamplex

xfi

SolutionThisistheindeterminateform 00xUsingL’Hopital’sRule,wextxtx

xsin x x

xfi

xfi

xfi0+x=1limx

=11=1xx xfi xxSymmertyofdefiniteintgral f˛Ca,a,yOaxIffsanyOaxaa-a xdx=a0fIffxsanoddfunction, aa fx= 1p1

Example

xcosxdx (a)Becausexcosxisanoddfunctionon-p,pp 2

xcosxdx=

2(b)Becauseln2+xisanoddfunctionon1,1,2-x1

dx=(f(x)=ln2+x,f(-x)=ln2-x=-ln2+x=-f(x),2-x 2+x 2-xln2+xisanoddfunction.)2-x5.4TheSecondFundamentalTheoremofCalculusandtheMethodofSubstitutionTheoremASecondFundamentalTheoremof let

becontinuous(henceintegrable)on[a,b],andbeanyantiderivativeoff on[a,b].Thenb f(x)dx=F(b)-FbbThisformulab

f(x)dx=F(b)-Fa.aisalsocalledTheNewton-Labniz'sFormulaandisa.abexpressedasb

f(x)dx=F(x)b

orF(x) Recall5.3TheoremA(TheFirstTheoremofCalculus),weknowxF(x)= f(t)dtisanantiderivativeoff(x)i.eF(x)=fForanyF(x),antiderivativeoff(x),wehaveF(x)=Letx=a

F(x)-F(x)”F(x)=F(x)+F(a)=F(a)+andnotethatF(a)= C=-F F(x)=F(x)+C=F(x)-F(a),thatx f(t)dt=F(x)-F

letx=b,theproofisBecauseF(x)isanantiderivativeoff(x),i.e.F(x)=f cingf(x)withF(x),wecanrewritetheb(x)dxF(x)dx,badF(x)=F(b)-FbTheImportance N-L•Provideapowerfultoolforevaluating•MakethelinkbetweendifferentiationandExample

Show

bkdx=k(b- ,wherea

isSolution:F(x)=kxisanantiderivativeof f(x)=k.Thus,bytheSecondFundamentalTheoremofCalculus,bkdx=x

=kb-ka=k(b-Exampleandr„-1

bxrdx,a

risareal

F(x)

xrr

isanantiderivative

f

Thus,bytheSecondFundamentalTheoremofb xr+1 ar br+1-arb xdx= r r r rExample

Evaluate24x-6x2

24x-6x2dx=2x2-2x3 82 2 24x-6x2dx=42xdx-6x2dx2 x2 x3 1 =42 -63 --6 +

2

4318(431Example

1

x3+ .8x

+x43dx=3x43

+3x738 8=316+3128-31+3 =45+381=6519

1e2x

1 10 +x0111e2x

dx=1e2x+ln(1+0

1+x 0 =1e2+ln2-1+0

-12

EvaluatingDefiniteTheoremTheoremASubstitutionRuleforindefiniteLetfbeadifferentiablefunctionandsupposethatFisanantiderivativeoff.Then,ifu=g(x),g(x)g(x)dxg(x)+Proof.Itisenoughtoshowthatthederivativeoftherightmemberis theintegrandoftheleftmember.Butthatisasimpleapplicationof theChainRulecombinedwiththefactthatF¢=f g(x)g(x)g(x)g(x)

x x2x2+ 2.x2+x2+

,thendu

dx.x2+x2x2+x2+x2+

dx=sinudu=-cosu+x2+=-x2+4Example 4

x2+x. Step Letu=x2+x,thendu=2x

.{ 1422x1{ 142u

udu=2u32+C=2x2+x32+ 44 2x+1dx2344 =22032-0= p0Example sin3 0 Letu=sin ,thendu=2cos2xdx.sin32

(sin2x)32cos2x 14 14=1u3du14

+C= 2x+p

2 sin2xx Question:CanwecombinetheabovetwostepsintoYes!ThisiswhatthefollowingThmTheoremTheoremBSubstitutionRuleforDefiniteLetghaveacontinuousderivativeon,andletbecontinuousontherangeofba g(x)g(x)dx.fLetFisanantiderivative f,therightsideofg(ag(a

f(u)du=[F(u)]g(b)=F(g(b))-F(g(a)).AndbecauseF(g(x))isanantiderivativeof f(g(x))g(xsotheleftsideofequation f(g(x))g(x)d=[F(g(x))]a=F(g(b))-F(g(a)).x2+4Werecallthex2+4Example

2.1dxLetu=x2+x,thendu=2x1dx x=0«u=0,x=4«u=44

x2+(2xx2+(14243

udu

2u32 5=232-0=5 1Example 1

Letu=x2+2x+6,2x2dxx1dxnote

x=0«u= andx=1«u=9.

dx=

2x+1)20x2

+2x+6

2

x

+2x+191= 1du=- 26u2 6=-11-1=1 Example

p2 44 xx9 Letu=x,thenx=u2,dx x «u=,x «u p2 4 dx=2 2uduxup2 xu 2cos3p2sinpp

=2-g(x)g(x)dx示成f(u)du后再积分.这就要求解题者熟练掌握基本初等xex2

dx.222 22x

dx=ex eudu

u=12

u

+C=1ex2+2⑵ x2lnx+1)

=2lnx+1 2lnx 2lnx

1u

u=2ln=1ln2

u=2ln

2

2lnx+1+tanxdxcot

sinx

dx=-

u=cosx-1u=-⑵

+C=

cotxdx=cosxdx= sin sin=lnsinx+

utantanxdx=lnsecx+cotxdx=-lncscx+例求积分⑴

a⑵

aa2-a2-a2+

dx=a2x

xa1+ a

dx

a x a

a1+1+ a=1arctanx+C. 1a2+dx=1arctanx+aaa2-1-axaa2-1-axa1-x2a1-x2aa

1-u21-u2

=arcsinx+a dx=arcsinx+Ca2-a例求积分 dxa>

dx

x2

xx=

-

x+a=1

dx

dx dx=1 dx=1lnx-a+x2-

+C=1

例secxdx,cscsecxdx

cosxdx=

dsin

cos2

1-sin2

du=

+ du=1 1-1+1+sin1-sin

1+1+1-+1-sin2

1+u

+C= 21+sinx cosx2

secx+tanx+secxdx=lnsecx+tanx+⑵

dx

sinxdx=-

sin

sin2

1-cos2

=1 =12

u

2-cos-cos1-cos22=1

1-cosx sin

+C=

cscx-cotx+ cscxdx=lncscx-cotx+tanxdtanxdx=lnsecx+=-lncscx+1a2+dx=1arctanx+ a2-aaxa x2-secdx1=lnsecx+tanx+=lncscx-cotx+xx

x1+

xdxx

xx xx x+

1+(xxux

2arctanudu=2arctanud(arctanu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论