2022-2023学年河北省石家庄市裕华区八年级(下)期末数学试卷(含解析)_第1页
2022-2023学年河北省石家庄市裕华区八年级(下)期末数学试卷(含解析)_第2页
2022-2023学年河北省石家庄市裕华区八年级(下)期末数学试卷(含解析)_第3页
2022-2023学年河北省石家庄市裕华区八年级(下)期末数学试卷(含解析)_第4页
2022-2023学年河北省石家庄市裕华区八年级(下)期末数学试卷(含解析)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页2022-2023学年河北省石家庄市裕华区八年级(下)期末数学试卷(含解析)2022-2023学年河北省石家庄市裕华区八年级(下)期末数学试卷

一、选择题(本大题共12小题,共24.0分。在每小题列出的选项中,选出符合题目的一项)

1.为了了解年石家庄市九年级学生学业水平考试的数学成绩,从中随机抽取了名学生的数学成绩下列说法正确的是()

A.年石家庄市九年级学生是总体B.每一名九年级学生是个体

C.名九年级学生是总体的一个样本D.样本容量是

2.如图,在平面直角坐标系中,盖住的点的坐标可能是()

A.

B.

C.

D.

3.如图,将四边形纸片剪掉一角得五边形,则所得新图形的外角和与原图形的外角和之间的关系是()

A.增加了

B.增加了

C.没有变化

D.不能判断

4.如图,在平面直角坐标系中,有一只蜗牛从点的位置沿着射线的方向爬行到另一象限的点,恰好,则点的坐标为()

A.

B.

C.

D.

5.如图,,两地被池塘隔开,小明在外选一点,连接,,分别取,的中点,,为了测量,两地间的距离,则可以选择测量以下线段中哪一条的长度()

A.B.C.D.

6.如图,在一次活动中,位于处的班准备前往相距的处于班会合,用方向和距离描述班相对于班的位置()

A.班在班南偏西处

B.班在班南偏西方向上处

C.班在班处

D.班在班北偏东方向上处

7.如图,与的形状相同,大小不同,是由的各顶点变化得到的,则各顶点变化情况()

A.横坐标和纵坐标都加

B.横坐标和纵坐标都乘以

C.横坐标和纵坐标都除以

D.横坐标和纵坐标都减

8.对于函数,下列说法不正确的是()

A.该函数是正比例函数B.该函数图象过点

C.该函数图象经过一、三象限D.随着的增大而增大

9.依据所标数据,下列不一定是矩形的为()

A.B.

C.D.

10.如图,已知直线与相交于点,则关于的不等式的解集在数轴上表示正确的是()

A.

B.

C.

D.

11.将的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是,正方形的顶点都在格点上,若直线与正方形有公共点,则不可能是()

A.B.C.D.

12.对于题目,“在长为的线段上取一点,使,以为边向上作矩形,且,点从点出发,沿射线方向以每秒个单位长的速度运动,点从点出发,先以每秒个单位长的速度向点运动,到达点后,再以每秒个单位长的速度沿射线方向运动,已知、同时出发,运动时间为,若以、、,为顶点的四边形是平行四边形,求的值”,甲答:,乙答,()

A.只有甲答的对B.只有乙答的对

C.甲、乙答案合在一起才完整D.甲、乙答案合在一起也不完整

二、填空题(本大题共6小题,共18.0分)

13.函数中自变量的取值范围是______.

14.一次函数的图象向上平移______个单位后经过点.

15.如图,点是矩形内任一点,若,则图中阴影部分的面积为______.

16.已知一次函数的图象经过,两点,则填“”“”或“”.

17.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量微克随时间小时而变化的情况如图所示研究表明,当血液中含药量微克时,对治疗疾病有效,则有效时间是______小时.

18.如图,菱形的对角线,相交于点,点为边上一动点不与点,重合,于点,于点,若,,则的最小值为.

三、解答题(本大题共8小题,共58.0分。解答应写出文字说明,证明过程或演算步骤)

19.本小题分

如图所示,在平面直角坐标系中,的三个顶点坐标分别为.

在图中画出关于轴对称的图形;

在图中,若与点关于一条直线成轴对称,则这条对称轴是______,此时点关于这条直线的对称点的坐标为______;

求的面积.

20.本小题分

购物支付方式日益增多,主要有:微信,支付宝,现金,其他数学兴趣小组对消费者的支付方式进行了抽样调查,得到如两幅不完整的统计图请你根据统计图提供的信息,解答下列问题:

本次一共调查了多少名消费者?

补全条形统计图;

求扇形统计图中对应的圆心角度数.

21.本小题分

如图,直线的图象与轴交于点,直线的图象与轴交于点,两者相交于点.

方程组的解是______;

当与同时成立时,的取值范围为______;

在直线的图象上存在异于点的另一点,使得与的面积相等,求出点的坐标.

22.本小题分

如图,中,,为锐角要在对角线上找点,,使四边形为平行四边形,现有图中的甲、乙、丙三种方案

正确的方案有______种;

针对上述三种作图方案,请从你认为正确的方案中选择一种给出证明过程.

23.本小题分

枣庄某公交车每天的支出费用为元,每天的乘车人数人与每天利润利润票款收入支出费用元的变化关系,如下表所示每位乘客的乘车票价固定不变:

根据表格中的数据,回答下列问题:

______是自变量;

观察表中数据可知,当乘客量达到______人以上时,该公交车才不会亏损;

请写出公交车每天利润元与每天乘车人数人的关系式:______;

当一天乘客人数为多少人时,利润是元?

24.本小题分

如图,在中,,过点的直线,为上一点,过点作,交直线于点,垂足为,连接,.

求证:;

当点是的中点时,四边形是什么特殊四边形?请说明你的理由;

请直接写出在的条件下,当______时,四边形是正方形.

25.本小题分

某学校积极响应合肥市“争创全国文明典范城市”的号召,绿化校园,美化校园,计划购进,两种树苗,共棵,已知种树苗每棵元,种树苗每棵元.设购买种树苗棵,购买两种树苗所需费用为元.

求与的函数表达式;

若购买种树苗的数量不少于种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.

26.本小题分

如图,直角坐标系中,过点的直线与直线:相交于点,直线与轴交于点.

的值为______;

求的函数表达式和的值;

直线与直线和直线分别交于点,,不同

直接写出,都在轴右侧时的取值范围;

在的条件下,以为边作正方形,边恰好在轴上,直接写出此时的值.

答案和解析

1.【答案】

【解析】解:、年石家庄市九年级学生的数学成绩是总体,原说法错误,故A选项错误;

B、每一名九年级学生的数学成绩是个体,原说法错误,故B选项错误;

C、名九年级学生的数学成绩是总体的一个样本,原说法错误,故C选项错误;

D、样本容量是,该说法正确,故D选项正确.

故选:.

根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可.

本题考查了总体、个体、样本、样本容量的知识,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

2.【答案】

【解析】解:、在第二象限,故A符合题意;

B、在第三象限,故B不符合题意;

C、在第一象限,故C不符合题意;

D、在第四象限,故D不符合题意;

故选:.

根据平面直角坐标系每一象限点的坐标特征,即可解答.

本题考查了点的坐标,熟练掌握平面直角坐标系每一象限点的坐标特征是解题的关键.

3.【答案】

【解析】解:多边形的外角和等于,

将四边形纸片剪掉一角得五边形,则所得新图形的外角和与原图形的外和都是,

没有变化.

故选:.

根据多边形的外角和等于即可得出答案.

本题考查了剪纸问题和多边形内角与外角,熟练掌握多边形内角与外角的公式是关键.

4.【答案】

【解析】解:,且点在射线上,

点与点关于原点对称,

点的坐标为.

故选:.

根据题意知,点与点关于原点对称,据此解答.

本题主要考查了坐标确定位置,解题时,需要推导出点与点关于原点对称.

5.【答案】

【解析】解:是的中点,是的中点,

是的中位线,

故选:.

根据中位线定理可得:.

本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.

6.【答案】

【解析】解:班在班的南偏西方向,距离千米的处;

故选:.

根据方位角的概念,可得答案.

本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.

7.【答案】

【解析】解:,;,,

各顶点变化情况为:横坐标和纵坐标都除以.

故选:.

直接利用对应点横纵坐标的关系进而得出答案.

此题主要考查了位似变换,正确利用已知点坐标的变化规律分析是解题关键.

8.【答案】

【解析】解:,,

该函数是正比例函数,选项A不符合题意;

B.当时,,

该函数图象过点,选项B符合题意;

C.,

该函数图象经过第一、三象限,选项C符合题意;

D.,

随的增大而增大,选项D不符合题意.

故选:.

A.利用正比例函数的定义可得出该函数是正比例函数;利用一次函数图象上点的坐标特征可得出该函数图象过点;利用正比例函数的性质可得出该函数图象经过第一、三象限;利用正比例函数的性质可得出随的增大而增大.

本题考查了一次函数图象上点的坐标特征、正比例函数的定义以及正比例函数的性质,逐一分析四个选项的正误是解题的关键.

9.【答案】

【解析】解:、对边平行且相等的四边形是平行四边形,有一个角是直角的平行四边形是矩形,故该选项不符合题意;

B、不能证明是矩形,故该选项符合题意;

C、有三个角是直角的四边形是矩形,故该选项不符合题意;

D、有两组对边分别相等的四边形是平行四边形,有一个直角的平行四边形是矩形,故该选项不符合题意.

故选:.

根据矩形的判定方法“有三个角是直角的四边形是矩形;有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;对角线相等且互相平分的四边形是矩形”即可求解.

本题主要考查了矩形的判定方法,熟练掌握矩形的判定方法是解题关键.

10.【答案】

【解析】解:直线与相交于点,

根据图象可知:关于的不等式的解集是,

在数轴上表示为:

故选:.

根据图象和交点坐标得出关于的不等式的解集是,即可得出答案.

本题考查了一次函数与一元一次不等式,在数轴上表示不等式的解集,主要培养学生的观察图象的能力和理解能力.

11.【答案】

【解析】解:由图可知,,,

当直线过点时,;当直线过点时,,即,

不可能是.

故选A.

先求出、两点的坐标,再求出直线过、两点时的值,进而可得出结论.

本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

12.【答案】

【解析】解:由题得,,

四边形是矩形,

若,则以、、,为顶点的四边形是平行四边形,

当从向运动时,,

当在上时,即时,

得,

当点在射线上的点右侧时,即时,,

当点从点向点运动且点在上时,即时,

当点从点向点方向运动且点在点右侧时,即时,

综上的值为或或或.

故选:.

由题得出共四种情况,当从向运动时,在上时;当点在射线上的点右侧时;当点从点向点运动且点在上时;当点从点向点方向运动且点在点右侧时,根据每种情况,分别求出和,令,再求出即可.

本题考查了矩形、平行四边形的性质及判定的应用,判断动点的位置、准确求出动点路程是解题关键.

13.【答案】且

【解析】解:由题意得,且,

解得且.

故答案为:且.

根据被开方数大于等于,分母不等于列式计算即可得解.

本题考查了函数自变量的范围,一般从三个方面考虑:

当函数表达式是整式时,自变量可取全体实数;

当函数表达式是分式时,考虑分式的分母不能为;

当函数表达式是二次根式时,被开方数非负.

14.【答案】

【解析】解:若一次函数的图象向上平移个单位后经过点,则平移后得到图象的解析式为,

经过点,

一次函数的图象向上平移个单位后经过点.

故答案为:.

根据“上加下减”的平移规律即可求得平移后的函数解析式,然后把点代入即可求解.

此题主要考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,求直线平移后的解析式时要注意平移时的值不变,只有发生变化.解析式变化的规律是:左加右减,上加下减.

15.【答案】

【解析】解:四边形是矩形,

设两个阴影部分三角形的底为,,高分别为,,则,

矩形的面积;

故答案为:.

根据三角形面积公式可知,图中阴影部分面积等于矩形面积的一半;即可得出结果.

本题考查了矩形的性质、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.

16.【答案】

【解析】

【分析】

本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是:牢记“当时,随的增大而增大;当时,随的增大而减小”;牢记直线上任意一点的坐标都满足函数关系式.

解法一由,可得出随的增大而增大,结合,即可得出;解法二利用一次函数图象上点的坐标特征,求出,的值,比较后即可得出结论.

【解答】

解:解法一,

随的增大而增大.

又,

故答案为:.

解法二当时,,

解得:;

当时,,

解得:.

故答案为.

17.【答案】

【解析】解:当时,设,

把代入上式,得,

时,;

当时,设,把,代入上式,

得,

解得,

把代入,得;

把代入,得,

则小时.

即该药治疗的有效时间长是小时.

故答案为:.

利用待定系数法分别求出和时,与之间的函数关系式,再把分别代入函数关系式解答即可.

本题主要考查利用一次函数的模型解决实际问题的能力和读图能力.解题的关键是要分析题意根据实际意义准确地列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.

18.【答案】

【解析】解:连接,

四边形是菱形,

,,,

于点,于点,

四边形是矩形,

当取最小值时,的值最小,

当时,最小,

的最小值为,

故答案为:.

连接,根据菱形的性质得到,,,根据勾股定理得到,根据矩形的性质得到,根据三角形的面积公式即可得到结论.

本题考查了矩形的判定和性质,垂线段最短,菱形的性质,熟练掌握垂线段最短是解题的关键.

19.【答案】解:如图,为所作;

轴,

的面积.

【解析】见答案

这条对称轴是轴,点的对称点的坐标为;

故答案为:轴,;

见答案。

利用关于轴对称的点的坐标特征得到、、的坐标,然后描点即可;

作的垂直平分线得到轴对称为轴,然后利用关于轴对称的点的坐标特征得到的坐标;

用一个矩形的面积分别减去三个直角三角形的面积去计算的面积.

本题考查了作图轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.

20.【答案】解:名,

答:本次调查的总人数为名;

支付方式的人数为名,

支付方式的人数为名,

补全条形统计图如下:

在扇形统计图中种支付方式所对应的圆心角为.

【解析】由支付方式及其所占百分比可得总人数;

总人数乘以对应百分比可得其人数,根据各支付方式的人数之和等于总人数求出支付方式的人数,从而补全图形;

用乘以对应人数所占比例即可.

本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.

21.【答案】

【解析】解:如图所示:方程组的解是为:;

故答案为:;

如图所示:当与同时成立时,

取何值范围是:;

故答案为:;

令,则,

点异于点,

,.

根据题意画出图象,利用其交点坐标得出方程组的解;

利用函数图象得出在轴上方时,对应的取值范围;

利用三角形面积求法得出点横坐标,进而代入函数解析式得出点坐标.

此题主要考查了一次函数与二元一次方程组以及一次函数与一元一次不等式和三角形面积求法等知识,正确利用数形结合分析是解题关键.

22.【答案】

【解析】解:正确的方案有种;

故答案为:;

方案甲中,连接,如图所示:

四边形是平行四边形,为的中点,

,,

,,

四边形为平行四边形,故方案甲正确;

方案乙中,四边形是平行四边形,

,,

,,

,,

在和中,

≌,

又,

四边形为平行四边形,故方案乙正确;

方案丙中,四边形是平行四边形,

,,,

平分,平分,

在和中,

≌,

,,

四边形为平行四边形,故方案丙正确.

根据题意即可得到结论;

方案甲,连接,由平行四边形的性质得,,则,得四边形为平行四边形,方案甲正确;

方案乙,证≌,得,再由,得四边形为平行四边形,方案乙正确;

方案丙,证≌,得,,则,证出,得四边形为平行四边形,方案丙正确.

本题考查了平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识;熟练掌握平行四边形的判定与性质是解题的关键.

23.【答案】每天的乘车人数

【解析】解:在这个变化关系中,自变量是:每天的乘车人数.

故答案为:每天的乘车人数.

观察表中数据可知,当时,,当时,,

当乘客量达到人以上时,该公交车才不会亏损.

故答案为:.

由题意得:,

公交车每天利润元与每天乘车人数人的关系式:.

故答案为:;

把代入,得:,

解得:.

答:当乘车人数为人时,利润为元.

在变化过程中,哪个变量是随着哪个交量的变化而变化的,从而确定自变量;

由表中数据可知,当时,,当时,,进行解答即可;

由表中数据可知,当乘坐人数为人时,利润为元,每增加人,利润就增加元,然后列出关系式即可解答;

把代入中的关系式进行计算即可解答.

本题考查函数的意义,理解两个变量的变化关系和变化趋势,会用表格、关系式表示函数,掌握函数的表示方法.理解表格中两个变量的变化关系是解答的关键.

24.【答案】

【解析】证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论