




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省新乡市平原中学2022-2023学年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=()x+()x,0<α,β<,若x>0时,f(x)<2,则(
)(A)0<α+β<
(B)0<α+β<
(C)<α+β<
(D)α+β>参考答案:D2.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈时,f(x)=1﹣x2.设g(x)=,则函数h(x)=f(x)﹣g(x)在区间内零点的个数为()A.8 B.10 C.12 D.14参考答案:D【考点】52:函数零点的判定定理.【分析】由已知可得函数f(x)是周期为2的周期函数,作出函数f(x)与g(x)的图象,数形结合得答案.【解答】解:函数h(x)=f(x)﹣g(x)的零点,即方程函数f(x)﹣g(x)=0的根,也就是两个函数y=f(x)与y=g(x)图象交点的横坐标,由f(x+2)=f(x),可得f(x)是周期为2的周期函数,又g(x)=,作出两函数的图象如图:∴函数h(x)=f(x)﹣g(x)在区间内零点的个数为14.故选:D.3.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定参考答案:B【考点】二次函数的性质.【分析】利用对称轴的公式求出对称轴,根据二次函数的单调区间得到,得到选项.【解答】解:∵函数y=ax2+bx+3的对称轴为∵函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数∴∴b=2a<0故选B4.函数的图象大致是()参考答案:D5.函数的定义域为()A.{x|x≥﹣2且x≠1} B.{x|x≥﹣2} C.{x|x≥﹣2或x≠1} D.{x|x≠1}参考答案:A【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由根式内部的代数式大于等于0,分式的分母不为0,联立不等式组得答案.【解答】解:由,得x≥﹣2且x≠1.∴函数的定义域为{x|x≥﹣2且x≠1}.故选:A.【点评】本题考查函数的定义域及其求法,是基础的计算题.6.如图的容器甲注水,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系(
)A. B. C. D.参考答案:B【考点】函数的图象.【专题】作图题.【分析】由容器的形状可知:注入水的高度随着时间的增长越来越高,但增长的速度越来越慢,即图象开始陡峭,后来趋于平缓,考查选项可得答案.【解答】解:由容器的形状可知:注入水的高度随着时间的增长越来越高,但增长的速度越来越慢,即图象开始陡峭,后来趋于平缓,综合考查几个选项可知只有B符合,故选B【点评】本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属基础题7.已知定义在R上的函数f(x)在(﹣∞,﹣2)上是减函数,若g(x)=f(x﹣2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞) B.[﹣4,﹣2]∪[0,+∞) C.(﹣∞,﹣4]∪[﹣2,+∞) D.(﹣∞,﹣4]∪[0,+∞)参考答案:C【考点】3N:奇偶性与单调性的综合.【分析】由g(x)=f(x﹣2)是奇函数,可得f(x)的图象关于(﹣2,0)中心对称,再由已知可得函数f(x)的三个零点为﹣4,﹣2,0,画出f(x)的大致形状,数形结合得答案.【解答】解:由g(x)=f(x﹣2)是把函数f(x)向右平移2个单位得到的,且g(2)=g(0)=0,f(﹣4)=g(﹣2)=﹣g(2)=0,f(﹣2)=g(0)=0,结合函数的图象可知,当x≤﹣4或x≥﹣2时,xf(x)≤0.故选:C.8.如图,F1,F2是双曲线(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为(
)A.4
B.
C.
D.参考答案:B设;因此;选B.
9.设,那么下列命题正确的是(
)A.
B.
C.
D.参考答案:B10.在区间上随机取一个数,使的值介于0到之间的概率为A.
B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知在各项为正的数列{an}中,a1=1,a2=2,,则=
.参考答案:﹣3【考点】8H:数列递推式.【分析】,可得anan+1=2n.可得=2.数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.利用等比数列的求和公式即可得出.【解答】解:∵,∴anan+1=2n.∴=,可得=2.∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.则=(a1+a3+…+a2017)+(a2+a4+…+a2016)﹣21010=+﹣21010=﹣3.故答案为:﹣3.【点评】本题考查了等比数列的通项公式与求和公式、分组求和方法、对数运算性质,考查了推理能力与计算能力,属于中档题.12.已知向量,的夹角为,且,,则__________.参考答案:2【分析】根据平面向量的数量积求出,进而可得所求结果.【详解】∵,∴.故答案为:.【点睛】数量积为解决平面中的垂直问题、长度问题和夹角问题提供了工具,解题的关键是正确求出向量的数量积,考查计算能力和数量积的应用,属于基础题.13.已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=
.参考答案:【分析】由题求得θ的范围,结合已知求得cos(θ),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ)的值.【详解】解:∵θ是第四象限角,∴,则,又sin(θ),∴cos(θ).∴cos()=sin(θ),sin()=cos(θ).则tan(θ)=﹣tan().故答案为:.14.定义运算:.若,则______参考答案:【分析】根据定义得到,计算,,得到,得到答案.【详解】,,故,.,故.故答案为:.【点睛】本题考查了三角恒等变换,变换是解题的关键.15.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数x,y,z,满足,,,则_______.参考答案:【分析】设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为:.【点睛】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.16.若圆上有且只有两个点到直线的距离为1,则实数的取值范围是
参考答案:17.化简
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(满分12分)等差数列的前项和记为,已知.(Ⅰ)求通项;(Ⅱ)若,求数列的前项的和.参考答案:解:(1)
……4分
……5分
(2)
……6分
当时=……7分当时,……8分=……9分
……11分
综上可得……12分19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x?v(x)可以达到最大,并求出最大值.(精确到1辆/小时).参考答案:【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【专题】应用题.【分析】(Ⅰ)根据题意,函数v(x)表达式为分段函数的形式,关键在于求函数v(x)在20≤x≤200时的表达式,根据一次函数表达式的形式,用待定系数法可求得;(Ⅱ)先在区间(0,20]上,函数f(x)为增函数,得最大值为f=1200,然后在区间[20,200]上用基本不等式求出函数f(x)的最大值,用基本不等式取等号的条件求出相应的x值,两个区间内较大的最大值即为函数在区间(0,200]上的最大值.【解答】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为.
(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.【点评】本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力,属于中等题.20.已知=(1,2),=(﹣2,6)(Ⅰ)求与的夹角θ;(Ⅱ)若与共线,且﹣与垂直,求.参考答案:【考点】平面向量数量积的运算.【分析】(Ⅰ)由向量的夹角公式计算即可,(Ⅱ)根据共线和向量垂直即可求出.【解答】解:(Ⅰ)∵=(1,2),=(﹣2,6),∴||==,||==2,=﹣2+12=10,∴cosθ===,∴θ=45°(Ⅱ)∵与共线,∴可设=λ=(﹣2λ,6λ),∴﹣=(1+2λ,2﹣6λ),∵﹣与垂直,∴(1+2λ)+2(2﹣6λ)=0,解得λ=,∴=(﹣1,3)21.已知幂函数在定义域上递增。(1)求实数k的值,并写出相应的函数的解析式;(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。参考答案:解:由题意得:,解得,因为,所以k=0,或k=1,当k=0时,,当k=1时,,综上所述,k的值为0或1,。(2)函数,由此要求,因此抛物线开口向下,对称轴方程为:,当时,,因为在区间上的最大值为5,所以,或解得满足题意。略22.(12分)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=?+λ(x∈R)的图象关于直线x=π对称,且经过点(,0),其中ω,λ为常数,ω∈(,1).(1)求函数f(x)的解析式;(2)先将函数y=f(x)的图象向右平移个单位,然后将所得图象上各点的横坐标变为原来的5倍,纵坐标不变,最后将所得图象向上平移个单位,得到函数y=g(x)的图象,求g(x)在区间上的值域.参考答案:考点: 函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.专题: 三角函数的图像与性质;平面向量及应用.分析: (1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期,先将已知点的坐标代入函数解析式,求得λ的值,即可求得函数f(x)的解析式;(2)由函数y=Asin(ωx+φ)的图象变换求得g(x)的解析式,求得﹣的取值范围,即可得到g(x)在区间上的值域.解答: (1)∵f(x)=?+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx×2cosωx+λ=﹣(cos2ωx﹣sin2ωx)+sin2ωx+λ,=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ,∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z,∴ω=+,又ω∈(,1),∴k=1时,ω=,∵f()=0,∴2sin(2××﹣)+λ=0,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年洋葱订购合同范本
- 商场承包废纸箱合同协议
- 品牌加盟协议合同协议
- 商业混凝土合同协议
- 2025年度财务审计委托合同协议书
- 2025汽车销售意向合同范文
- 2025家长车主智能出行安全合同
- 2025届湖北省部分高中协作体高三下学期期中联考历史试题及答案
- 县区巡察主任工作汇报
- 2025年延迟退休改革后建筑业劳动合同模板调整及范本
- 初中英语七选五经典5篇(附带答案)
- 巡察知识讲解课件
- 芯片销售入职培训课件
- 苏丹草品种与栽培技术
- 智能垃圾桶教学课件
- 基于ITU-R P.1546传播模型的适用性和可视化研究
- 厂房出租合同简易范本
- 乾坤未定,你我皆是黑马!课件-2023-2024学年高三上学期励志教育主题班会
- 2023年健康医疗大数据行业调研分析报告
- 拼多多民事起诉状模板
- 建设工程安全管理红线全套
评论
0/150
提交评论