2022-2023学年河南省商丘市双塔乡第一中学高三数学理模拟试题含解析_第1页
2022-2023学年河南省商丘市双塔乡第一中学高三数学理模拟试题含解析_第2页
2022-2023学年河南省商丘市双塔乡第一中学高三数学理模拟试题含解析_第3页
2022-2023学年河南省商丘市双塔乡第一中学高三数学理模拟试题含解析_第4页
2022-2023学年河南省商丘市双塔乡第一中学高三数学理模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省商丘市双塔乡第一中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是公差为d(d≠0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是A.若d<0,则数列﹛Sn﹜有最大项B.若数列﹛Sn﹜有最大项,则d<0C.若数列﹛Sn﹜是递增数列,则对任意,均有D.若对任意,均有,则数列﹛Sn﹜是递增数列

参考答案:C

选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{Sn}是递增数列,但是Sn>0不成立.故选C。2.复数(i是虚数单位)的实部是

(A)

(B)

(C)

(D)参考答案:3.已知函数f(x)=sin(2x+)(x∈R),为了得到函数g(x)=cos2x的图象,只需将y=f(x)的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的求值.【分析】利用诱导公式把函数f(x)=sin(2x+)变形为,f(x)=cos(﹣2x)=cos(2x﹣),得到要得到函数g(x)的图象,只要把函数g(x)平移为f(x),转化即可.【解答】解:∵f(x)=sin(2x+)变形为,f(x)=cos(﹣2x)=cos(2x﹣),∴平移函数g(x)=cos2x的图象,向右平移个单位长度,即可得到f(x)的图象.为了得到函数g(x)=cos2x的图象,只需将y=f(x)的图象向左平移个单位.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是中档题.4.程序框图如右图:

如果上述程序运行的结果为s=132,那么判断框中应填入A.B.C.D.参考答案:B5.已知是R上的减函数,是图像上的两点,那么不等式的解集为

A.

B.

C.

D.参考答案:C6.设复数(i为虚数单位),则z的虚部为(

)A.-1 B.1 C.–i D.i参考答案:A7.与椭圆共焦点且过点P(2,1)的双曲线方程是()A. B. C. D.参考答案:B【考点】双曲线的标准方程.【专题】计算题.【分析】先根据椭圆的标准方程,求得焦点坐标,进而求得双曲线离心率,根据点P在双曲线上,根据定义求出a,从而求出b,则双曲线方程可得.【解答】解:由题设知:焦点为a=,c=,b=1∴与椭圆共焦点且过点P(2,1)的双曲线方程是故选B.【点评】本题主要考查了双曲线的标准方程.考查了学生对双曲线和椭圆基本知识的掌握.8.已知函数,若,的图象恒在直线的上方,则的取值范围是(

)A.

B.

C.

D.参考答案:C的图象恒在直线的上方,即恒成立,当k=0时,的取值范围是.故答案为:C.

9.若集合,则集合中的元素的个数为(

)(A)

5

(B)

4

(C)

3

(D)

2参考答案:C10.阅读下程序框图,若输入,,则输出分别是A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.一组样本数据的茎叶图如右:,则这组数据的平均数等于

.参考答案:23

略12.不等式的解集是___________.

参考答案:(-1,3)略13.已知离心率是的双曲线﹣=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,则该双曲线的标准方程为.参考答案:【考点】KI:圆锥曲线的综合.【分析】利用抛物线方程求出双曲线的焦点坐标,通过离心率求出a,然后求解b,即可求解双曲线方程.【解答】解:离心率是的双曲线﹣=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,可得c=5,=,可得a=,则b==2.所求的双曲线方程为:.故答案为:.【点评】本题考查抛物线以及双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.14.(5分)已知圆心角为120°的扇形AOB的半径为1,C为弧AB的中点,点D、E分别在半径OA、OB上.若CD2+CE2+DE2=,则OD+OE的最大值是.参考答案:【考点】:向量在几何中的应用;余弦定理.【专题】:计算题.【分析】:设OD=a且OE=b,由余弦定理加以计算,可得CD2+CE2+DE2=2(a2+b2)﹣(a+b)+ab+2=,配方整理得3ab=2(a+b)2﹣(a+b)﹣,结合基本不等式建立不等关系,得2(a+b)2﹣(a+b)﹣≤(a+b)2,最后以a+b为单位解一元二次不等式,即可得到OD+OE的最大值.解:设OD=a,OE=b,由余弦定理,得CD2=CO2+DO2﹣2CO?DOcos60°=a2﹣a+1.同理可得CE2=b2﹣b+1,DE2=a2+ab+b2从而得到CD2+CE2+DE2=2(a2+b2)﹣(a+b)+ab+2=∴2(a2+b2)﹣(a+b)+ab﹣=0,配方得2(a+b)2﹣(a+b)﹣3ab﹣=0,即3ab=2(a+b)2﹣(a+b)﹣…(*)又∵ab≤[(a+b)]2=(a+b)2,∴3ab≤(a+b)2,代入(*)式,得2(a+b)2﹣(a+b)﹣≤(a+b)2,设a+b=m,代入上式有2m2﹣m﹣≤m2,即m2﹣m﹣≤0,得到﹣≤m≤,∴m最大值为,即OD+OE的最大值是.【点评】:本题给出扇形AOB的中心角为120°,弧AB中点为C,半径OA、OB上的点D、E满足CD2+CE2+DE2=时,求OD+OE的最大值.着重考查了余弦定理、用基本不等式求最值和一元二次不等式的解法等知识,属于中档题.15.在四面体ABCD中,,,,则四面体ABCD的外接球的体积为_____________________________。参考答案:.【分析】根据三角形的边长关系得到再结合题干得到平面,,进而得到三角形BCD和三角形ACD有公共的斜边,得到球心为的中点进而求解.【详解】由题意知,,∴,∵,∴平面,∴,∴在中,,∴四面体的外接球的球心为的中点,则其半径,故球的体积为故答案为:.【点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.16.已知函数有反函数,且则

.参考答案:1试题分析:根据反函数的知识,求,实质上是相当于函数中已知函数值为0,求对应的自变量的值,因此令,所以.考点:反函数.

17.若奇函数在上单调递减,则不等式的解集是

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求;(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的的最小值.参考答案:(I)由题意得:,

即,则是“平方递推数列”.

……………2分又有得是以为首项,2为公比的等比数列.

……………4分(II)由(I)知,

……………5分.

……………8(III),

……………9分,

……………10分又,即,,

又,

……………13分19.(本小题满分12分)如图,在直棱柱,,。(I)证明:;

(II)求直线所成角的正弦值。参考答案:(Ⅰ).

----------

4(Ⅱ)。-------1220.(13分)(2015?许昌三模)已知函数,x∈R.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最大值和最小值及相应的x的值.参考答案:考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.

专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)化简解析式可得f(x)=2sin(2x+),由周期公式即可求T的值.(Ⅱ)由x∈,可求.从而可求最大值和最小值及相应的x的值.解答:解:(Ⅰ)f(x)=2sin(x+)cos(x+)+2cos2(x﹣)﹣1=sin(2x+)+cos(2x﹣)=cos2x+sin2x=2sin(2x+)T==π.…7分(Ⅱ)因为x∈,所以.所以当2x=,即x=时,ymax=2;当2x=,即x=时,.…(13分)所以当x=时,函数有最大值是2;当x=时,函数有最小值是﹣.点评:本题主要考察了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数的图象与性质,属于中档题.21.已知三棱柱ABC﹣A′B′C′的底面为直角三角形,两条直角边AC和BC的长分别为4和3,侧棱AA′的长为10.(1)若侧棱AA′垂直于底面,求该三棱柱的表面积;(2)若侧棱AA′与底面所成的角为60°,求该三棱柱的体积.参考答案:【考点】棱柱、棱锥、棱台的体积.【专题】整体思想;定义法;空间位置关系与距离.【分析】(1)根据直三棱柱的表面积公式进行求解即可.(2)作出棱柱的高,结合三棱柱的体积公式进行求解即可.【解答】解:(1)因为侧棱AA′⊥底面ABC,所以三棱柱的高h等于侧棱AA′的长,而底面三角形ABC的面积S=AC?BC=6,周长c=4+3+5=12,于是三棱柱的表面积S全=ch+2S△ABC=132.(2)如图,过A作平面ABC的垂线,垂足为H,A′H为三棱柱的高.因为侧棱AA′与底面ABC所长的角为60°,所以∠A′AH=60°,又底面三角形ABC的面积S=6,故三棱柱的体积V=S?A′H=6×=30.【点评】本题主要考查三棱柱的表面积和体积的计算,根据直三棱柱和斜三棱柱的特点和性质,结合棱柱的表面积和体积公式进行计算是解决本题的关键.22.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知矩形是圆柱体的轴截面,分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为,且该圆柱体的体积为,如图所示.(1)求圆柱体的侧面积的值;(2)若是半圆弧的中点,点在半

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论