版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义运算,,例如,则函数的值域为()A. B. C. D.2.若全集U={1,2,3,4}且∁UA={2,3},则集合A的真子集共有()A.3个 B.5个 C.7个 D.8个3.某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有()A.34种 B.35种 C.120种 D.140种4.有名学生,其中有名男生.从中选出名代表,选出的代表中男生人数为,则其数学期望为()A. B. C. D.5.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有()A.14个 B.13个 C.15个 D.12个6.若函数在区间上是减函数,则实数的取值范围是()A. B. C. D.7.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁8.在等差数列中,,则为()A.2 B.3 C.4 D.59.若直线:(为参数)经过坐标原点,则直线的斜率是A. B.C.1 D.210.已知四个命题:①如果向量与共线,则或;②是的充分不必要条件;③命题:,的否定是:,;④“指数函数是增函数,而是指数函数,所以是增函数”此三段论大前提错误,但推理形式是正确的.以上命题正确的个数为()A.0 B.1 C.2 D.311.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上12.的展开式中的系数为()A.5 B.10 C.20 D.30二、填空题:本题共4小题,每小题5分,共20分。13.设复数,则_________________.14.已知,N*,满足,则所有数对的个数是____.15.已知抛物线的焦点为,准线为,过的直线与交于,两点,过作,垂足为,的中点为,若,则__16.在极坐标系中,圆上的点到直线的距离的最小值是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在三棱柱中,是边长为4的正方形,,.(l)求证:;(2)求二面角的余弦值.18.(12分)如图,是圆柱的底面直径且,是圆柱的母线且,点是圆柱底面面圆周上的点.(1)求证:平面;(2)当三棱锥体积最大时,求二面角的大小;(结果用反三角函数值表示)(3)若,是的中点,点在线段上,求的最小值.19.(12分)已知数列满足().(1)计算,,,并写出与的关系;(2)证明数列是等比数列,并求出数列的通项公式.20.(12分)在中,角,,所对的边分别为,,,已知.(Ⅰ)求的值;(Ⅱ)若,求.21.(12分)如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.22.(10分)宁德市某汽车销售中心为了了解市民购买中档轿车的意向,在市内随机抽取了100名市民为样本进行调查,他们月收入(单位:千元)的频数分布及有意向购买中档轿车人数如下表:月收入[3,4)[4,5)[5,6)[6,7)[7,8)[8,9)频数6243020155有意向购买中档轿车人数212261172将月收入不低于6千元的人群称为“中等收入族”,月收入低于6千元的人群称为“非中等收入族”.(Ⅰ)在样本中从月收入在[3,4)的市民中随机抽取3名,求至少有1名市民“有意向购买中档轿车”的概率.(Ⅱ)根据已知条件完善下面的2×2列联表,并判断有多大的把握认为有意向购买中档轿车与收入高低有关?非中等收入族中等收入族总计有意向购买中档轿车人数40无意向购买中档轿车人数20总计1000.100.050.0100.0052.7063.8416.6357.879附:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:欲求函数y=1*2x的值域,先将其化成分段函数的形式,再画出其图象,最后结合图象即得函数值的取值范围即可.详解:当1≤2x时,即x≥0时,函数y=1*2x=1当1>2x时,即x<0时,函数y=1*2x=2x∴f(x)=由图知,函数y=1*2x的值域为:(0,1].故选D.点睛:遇到函数创新应用题型时,处理的步骤一般为:①根据“让解析式有意义”的原则,先确定函数的定义域;②再化简解析式,求函数解析式的最简形式,并分析解析式与哪个基本函数比较相似;③根据定义域和解析式画出函数的图象④根据图象分析函数的性质.2、A【解析】
由题意首先确定集合A,然后由子集个数公式求解其真子集的个数即可.【详解】由题意可得:,则集合A的真子集共有个.本题选择A选项.【点睛】本题主要考查补集的定义,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.3、A【解析】分析:根据题意,选用排除法,分3步,①计算从7人中,任取4人参加志愿者活动选法,②计算选出的全部为男生或女生的情况数目,③由事件间的关系,计算可得答案.详解:分3步来计算,
①从7人中,任取4人参加志愿者活动,分析可得,这是组合问题,共C74=35种情况;
②选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,
③根据排除法,可得符合题意的选法共35-1=34种;
故选A.点睛:本题考查计数原理的运用,注意对于本类题型,可以使用排除法,即当从正面来解所包含的情况比较多时,则采取从反面来解,用所有的结果减去不合题意的结果.4、B【解析】
利用超几何分布分别求随机变量X的概率,分布列及其数学期望即可得出.【详解】随机变量X的所有可能取值为1,2,3,4.P(X=k)=(k=1,2,3,4).所以,随机变量X的分布列为X1234P随机变量X的数学期望E(X)=.【点睛】本题考查了超几何分布的概率计算公式、分布列及其数学期望,考查了推理能力与计算能力,属于中档题.5、A【解析】分析:由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.详解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故答案为:A.点睛:本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏.6、D【解析】
根据复合函数的单调性,同增异减,则,在区间上是增函数,再根据定义域则在区间上恒成立求解.【详解】因为函数在区间上是减函数,所以,在区间上是增函数,且在区间上恒成立.所以且,解得.故选:D【点睛】本题主要考查复合函数的单调性,还考查了理解辨析和运算求解的能力,属于中档题.7、B【解析】∵乙、丁两人的观点一致,∴乙、丁两人的供词应该是同真或同假;若乙、丁两人说的是真话,则甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论,矛盾;∴乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯.8、A【解析】
由等差数列性质,得,问题得解.【详解】是等差数列,,,解得.故选:A【点睛】本题考查了等差数列的性质,属于基础题.9、D【解析】
先由参数方程消去参数,再由直线过原点,即可得出结果.【详解】直线方程消去参数,得:,经过原点,代入直线方程,解得:,所以,直线方程为:,斜率为2.故选D【点睛】本题主要考查直线的参数方程,熟记参数方程与普通方程的互化即可,属于基础题型.10、B【解析】
由向量共线定理可判断①;由充分必要条件的定义可判断②;由特称命题的否定为全称命题,可判断③;由指数函数的单调性可判断④.【详解】①,如果向量与共线,可得xy,不一定或,故①错误;②,|x|≤3⇔﹣3≤x≤3,x≤3不能推得|x|≤3,但|x|≤3能推得x≤3,x≤3是|x|≤3的必要不充分条件,故②错误;③,命题p:∃x0∈(0,2),的否定是¬p:∀x∈(0,2),x2﹣2x﹣3≥0,故③错误;④,“指数函数y=ax是增函数,而是指数函数,所以是增函数”由于a>1时,y=ax为增函数,0<a<1时,y=ax为减函数,此三段论大前提错误,但推理形式是正确的,故④正确.其中正确个数为1.故选B.【点睛】本题考查命题的真假判断,主要是向量共线定理和充分必要条件的判断、命题的否定和三段论,考查推理能力,属于基础题.11、B【解析】
设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置.【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选:B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力.12、D【解析】
根据乘法分配律和二项式展开式的通项公式,列式求得的系数.【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有的为,故展开式中的系数为,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】解法一:由题意可得:.解法二:14、4;【解析】
因为,即,所以,因为已知,N*,所以,,继而讨论可得结果.【详解】因为,即,所以,因为已知,N*,所以,,又,故有以下情况:若,得:,若得:,若得:,若得:,即的值共4个.【点睛】本题考查数论中的计数问题,是创新型问题,对综合能力的考查要求较高.15、16【解析】
由题意画出图形,利用几何知识得到直线的斜率,进一步求得直线的方程,与抛物线方程联立,由弦长公式即可得答案.【详解】由题意画出图形如图,,为的中点,且,,则直线的倾斜角为,斜率为.由抛物线,得,则直线的方程为.联立,得.则,.【点睛】本题主要考查抛物线的定义,直线与抛物线位置关系的应用,以及弦长的求法.16、1【解析】试题分析:圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.考点:直角坐标与极坐标、距离公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)利用线面垂直的判定定理,证得平面,即可得到;(2)以为轴,轴,轴建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:因为是边长为4的正方形,所以,又,,由线面垂直的判定定理,可得平面ABC,所以.(2)在中,有,所以,分别以AC,AB,为x轴,y轴,z轴建立如图所示的空间直角坐标系,,,设平面的法向量为,则,取,则,同理得平面的法向量,设二面角的平面角为,则.【点睛】本题考查了直线与平面垂直判定与证明,以及空间角的求解问题,考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.18、(1)详见解析;(2);(3).【解析】
(1)根据圆柱性质可得,由圆的性质可得,即可证明平面;(2)先判断当三棱锥体积最大时的位置.过底面圆心作,即可得二面角的平面角为,根据所给线段关系解三角形即可求得,进而用反三角函数表示出即可.(3)将绕旋转到使其共面,且在的反向延长线上,结合余弦定理即可求得的最小值,也就是的最小值.【详解】(1)证明:因为是圆柱的母线,平面所以又因为是圆柱的底面直径所以,即又因为所以平面(2)当三棱锥体积最大时,底面积最大,所以到的距离最大,此时为设底面圆的圆心为,连接则,又因为所以平面因为,所以取中点,则过O作,垂足为则,所以为中点连接,由平面可知所以为二面角的平面角在中,,,所以则二面角的大小为(3)将绕旋转到使其共面,且在的反向延长线上,如下图所示:因为,,,,在中,由余弦定理可知则所以的最小值为【点睛】本题考查了线面垂直的判定,二面角的平面角作法及求法,空间中最短距离的求法,综合性较强,属于中档题.19、(1),,;;(2)证明见解析,【解析】
(1)代入,和,计算得到,,,通过,得到与的关系;(2)根据(1)中所得与的关系,得到,并求出的值,从而得到是等比数列,写出其通项,再得到的通项.【详解】(1)由已知可得,时,,即,时,,即,时,,即.由(),得,两式相减,得,即.(2)证明:由(1)得,且,∴,∴数列是等比数列,公比为,首项为,所以,∴.【点睛】本题考查根据和的关系求递推关系,通过递推关系构造法求数列通项,证明数列为等比数列,属于简单题.20、(1);(2)或.【解析】试题分析:(1)由已知利用三角形内角和定理,三角函数恒等变换的应用化简即可求值;(2)由已知利用正弦定理及(1)可得,进而可求角.试题解析:(Ⅰ),故,∴.(Ⅱ)由正弦定理得,由(Ⅰ)知,∴,∴或,∴或.21、(1)见解析(2)【解析】分析:(1)通过取AD中点M,连接CM,利用,得到直角;再利用可得;而,DE平面ADEF,所以可得面面垂直.(2)以AD中点O建立空间直角坐标系,写出各点坐标,求得平面CAE与直线BE向量,根据直线与法向量的夹角即可求得直线与平面夹角的正弦值.详解:(1)证明:取的中点,连接,,,由四边形为平行四边形,可知,在中,有,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共关系专员职业资格考试《媒体关系管理》备考题库及答案解析
- 2025年广告传播师《广告媒体策划与购买》备考题库及答案解析
- 商铺租赁合同续签补充协议2025年条款
- 清洁服务人员劳动合同2025
- 配送服务人员工作协议2025
- 剧院2025年演出经纪合同协议
- 2025年绩效结果强制分布与校准考试试题及答案
- 外汇合同补充协议范本
- 培训机构整合合同范本
- 垃圾厂倒垃圾合同范本
- 二构钢筋包工合同范本
- 医疗健康体检服务投标书标准范本
- 建筑公司安全生产责任制度模板
- 滴灌设备相关知识培训课件
- 医院培训课件:《中医护理文书书写规范》
- 2025-2026学年冀教版(2024)小学信息技术三年级上册(全册)教学设计(附目录P168)
- 城市燃气设施提升改造工程节能评估报告
- 2025团校入团积极分子100题题库(含答案)
- 餐饮服务连锁企业落实食品安全主体责任监督管理规定
- 2025-2030中国皮肤外用药市场竞品分析与产品定位报告
- 2025北京市大兴区人民法院临时辅助用工招聘6人备考考试题库附答案解析
评论
0/150
提交评论