版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
面积问题二次函数的应用(1)例1:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
ABCD解:(1)∵AB为x米、篱笆长为24米∴花圃宽为(24-4x)米
(3)∵墙的可用长度为8米
(2)当x=时,S最大值==36(平方米)∴S=x(24-4x)=-4x2+24x(0<x<6)∴0<24-4x≤84≤x<6∴当x=4cm时,S最大值=32平方米商品利润问题二次函数的应用(2)※、某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?探究
设每件涨价x元,每星期售出商品的利润为y元。※、某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?探究(1)涨价x元时,每星期少卖
件,实际卖出
件;10x(300-10x)※、某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?探究(2)涨价x元时,每件定价为
元,销售额为
元,所得利润为
元.(60+x)(60+x)(300-10x)(60+x)(300-10x)-40(300-10x)探究(3)当x=
时,y最大=
元.5y=(60+x)(300-10x)-40(300-10x)656250y=-10x2+100x+6000(0≤x≤30)∴在涨价情况下,当定价为
时,利润最大,最大利润为
元.6250★、某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?探究(1)降价x元时,每星期多卖
件,实际卖出
件;20x(300+20x)★、某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?探究(2)降价x元时,每件定价为
元,销售额为
元,所得利润为
元.(60-x)(60-x)(300+20x)(60-x)(300+20x)-40(300+20x)探究(3)当x=
时,y最大=
元.2.5y=(60-x)(300+20x)-40(300+20x)57.56125y=-20x2+100x+6000(0≤x≤20)∴在降价情况下,当定价为
时,利润最大,最大利润为
元.6125探究57.5
在降价情况下,当定价为
时,利润最大,最大利润为
元.612565∵在涨价情况下,当定价为
时,利润最大,最大利润为
元.6250∴综上所述,当定价为
时,利润最大,最大利润为
元.656250探究※、计算机把数据存在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道,叫做磁道。如图,有一张半径为45mm的磁盘。探究(1)磁盘最内磁道的半径为rmm,其上每0.015mm的弧长为1个存储单元,这条磁道有多少个存储单元?探究(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外圆周不是磁道,这张磁盘最多有多少条磁道?探究(3)如果各磁道的存储单元数目与最内磁道相同,最内磁道的半径r是多少时,磁盘的存储量最大?动点问题二次函数的应用(2)如图,在△ABC中∠B=90º,AB=12cm,BC=24cm,动点P从A开始沿AB边以2cm/s的速度向B运动,动点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、Q分别从A、B同时出发。(1)写出△PBQ的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围;(2)当t为何值时,△PBQ的面积S最大,最大值是多少?QPCBA课时训练BP=12-2t,BQ=4t△PBQ的面积:S=1/2(12-2t)•4t即S=-4t²+24t=-4(t-3)²+36
例2、如图,在直径为AB的半圆内,画一个三角形区域,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8。现要建造一个内接于△ABC的矩形DEFN,其中DE在AB上,如图设计的方案是使AC=8,BC=6。(1)求△ABC中AB边上的高h。(2)设DN=x,当x取何值时,水池DEFN面积y最大?··NCFBEODAHK解:(1)过点C作CH⊥AB于点H,交NF于点K,∵AB是⊙O
的直径,∴∠ACB=90º,又∵AC=8,BC=6,∴AB=10。∵CH⊥AB,∴AC•BC=AB•CH。∴CH=4.8。(2)∵NF∥AB,∴△CNF∽△CAB,∴NF:CK=AB:CH。
∵DN=X,∴CK=4.8-x,∴NF=10-25/12•x,∴y=x(10-25/12•x)=-25/12(x-2.4)²+12。∴当X=2.4时,水池DEFN面积y最大,最大值为12。某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?xxy(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.MN40m30mABCD┐(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.ABCD┐MN40m30mxmbm(1).如果设矩形的一边AD=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.ABCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商铺转让2025年合同协议条款
- 人力资源服务合同协议2025规范版
- 临时保安2025年聘用合同协议
- 酒店管理服务协议2025年细则
- 商铺正式网签合同范本
- 地下维修保养合同范本
- 在原合同上续签协议书
- 多人开店合作合同范本
- 国企粮库购销合同范本
- 场地合租协议合同范本
- 下肢康复机器人训练对脑卒中偏瘫患者下肢运动功能的康复作用
- GB/T 27818-2011化学品皮肤吸收体外试验方法
- FZ/T 80004-2014服装成品出厂检验规则
- 外科护理创伤病人的护理
- 架空与电缆混合110kV线路工程强制性条文执行计划
- 供水企业暂停供水审批或备案表
- 正负图形课件
- 湖北省部分重点中学2023届高三上学期10月联考英语试卷含答案
- HDI流程简介(教材)课件
- StarbucksCaseStudy星巴克案例分析
- 镇静催眠药对比区别与选择
评论
0/150
提交评论