




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题19数列的求和问题十年大数据*全景展示年份题号考点考查内容2011理17拆项消去求和法等比数列的通项公式、性质、等差数列的前SKIPIF1<0项和公式及拆项相消求和法,运算求解能力2012理16公式法与分组求和法灵活运用数列知识求数列问题能力2013卷2理16数列综合问题等差数列的前SKIPIF1<0项和公式及数列最值问题,函数与方程思想卷1文17拆项消去求和法等差数列的通项公式、前SKIPIF1<0项和公式及列项求和法,方程思想卷1理12数列综合问题递推数列、数列单调性、余弦定理、基本不等式应用等基础知识,综合利用数学知识分析解决问题能力2014卷1文17错位相减法等差数列的通项公式及错位相减法,方程思想、转化与化归思想2015卷1理17拆项消去求和法利用数列利用前SKIPIF1<0项和SKIPIF1<0与SKIPIF1<0关系求通项公式、等差数列定义及通项公式、利用拆项消去法数列求和2016卷3理12数列综合问题对新概念的理解和应用新定义列出满足条件的数列卷1理17公式法与分组求和法等差数列通项公式与前SKIPIF1<0项和公式、对新概念的理解与应用,分组求和法2017卷3文17拆项消去求和法利用数列利用前SKIPIF1<0项和SKIPIF1<0与SKIPIF1<0关系求通项公式及利用拆项消去法数列求和卷2理15拆项消去求和法等差数列基本量的运算等差数列通项公式、前SKIPIF1<0项和公式及拆项消去求和法,方程思想卷1理12数列综合问题等比数列的前SKIPIF1<0项和公式、等差数列前SKIPIF1<0项和公式,逻辑推理能力2020卷2文12等差数列等差数列通项公式、前SKIPIF1<0项和公式卷3理17数列综合问题数学归纳法,错位相减法求数列的和文17等差数列与等比数列等比数列通项公式,等差数列前SKIPIF1<0项和公式大数据分析*预测高考考点出现频率2021年预测考点61公式法与分组求和法1/132021年高考数列求和部分仍将重点拆线消去法和错位相减法及与不等式恒成立等相关的数列综合问题,求和问题多为解答题第二问,难度为中档,数列综合问题为小题压轴题,为难题考点62裂项相消法求和5/13考点63错位相减法2/13考点64并项法与倒序求和法1/13考点65数列综合问题4/13十年试题分类*探求规律考点61公式法与分组求和法1.(2020全国Ⅱ文14)记SKIPIF1<0为等差数列SKIPIF1<0的前SKIPIF1<0项和,若SKIPIF1<0,则SKIPIF1<0.【答案】SKIPIF1<0【思路导引】∵SKIPIF1<0是等差数列,根据已知条件SKIPIF1<0,求出公差,根据等差数列前SKIPIF1<0项和,即可求得答案.【解析】SKIPIF1<0SKIPIF1<0是等差数列,且SKIPIF1<0.设SKIPIF1<0等差数列的公差SKIPIF1<0,根据等差数列通项公式:SKIPIF1<0,可得SKIPIF1<0,即:SKIPIF1<0,整理可得:SKIPIF1<0,解得:SKIPIF1<0.SKIPIF1<0根据等差数列前SKIPIF1<0项和公式:SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故答案为:SKIPIF1<0.2.(2020浙江11)已知数列SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0.【答案】10【思路导引】根据通项公式可求出数列SKIPIF1<0的前三项,即可求出.【解析】由题意可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案为:10.3.(2020山东14)将数列SKIPIF1<0与SKIPIF1<0的公共项从小到大排列得到数列SKIPIF1<0,则SKIPIF1<0的前SKIPIF1<0项和为.【答案】SKIPIF1<0【思路导引】首先判断出数列SKIPIF1<0与SKIPIF1<0项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【解析】因为数列SKIPIF1<0是以1为首项,以2为公差的等差数列,数列SKIPIF1<0是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列SKIPIF1<0是以1为首项,以6为公差的等差数列,所以SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,故答案为:SKIPIF1<0.4.(2012新课标,理16)数列{SKIPIF1<0}满足SKIPIF1<0,则{SKIPIF1<0}的前60项和为.【答案】1830【解析】由题设知,SKIPIF1<0=1,①SKIPIF1<0=3②SKIPIF1<0=5③SKIPIF1<0=7,SKIPIF1<0=9,SKIPIF1<0=11,SKIPIF1<0=13,SKIPIF1<0=15,SKIPIF1<0=17,SKIPIF1<0=19,SKIPIF1<0,……,∴②-①得SKIPIF1<0=2,③+②得SKIPIF1<0=8,同理可得SKIPIF1<0=2,SKIPIF1<0=24,SKIPIF1<0=2,SKIPIF1<0=40,…,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,是各项均为2的常数列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…是首项为8,公差为16的等差数列,∴{SKIPIF1<0}的前60项和为SKIPIF1<0=1830.5.(2020山东18)已知公比大于SKIPIF1<0的等比数列SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通项公式;(2)记SKIPIF1<0为SKIPIF1<0在区间SKIPIF1<0SKIPIF1<0中的项的个数,求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【思路导引】(1)利用基本元的思想,将已知条件转化为SKIPIF1<0的形式,求解出SKIPIF1<0,由此求得数列SKIPIF1<0的通项公式;(2)通过分析数列SKIPIF1<0的规律,由此求得数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【解析】(1)由于数列SKIPIF1<0是公比大于SKIPIF1<0的等比数列,设首项为SKIPIF1<0,公比为SKIPIF1<0,依题意有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以数列SKIPIF1<0的通项公式为SKIPIF1<0.(2)由于SKIPIF1<0,所以SKIPIF1<0对应的区间为:SKIPIF1<0,则SKIPIF1<0;SKIPIF1<0对应的区间分别为:SKIPIF1<0,则SKIPIF1<0,即有SKIPIF1<0个SKIPIF1<0;SKIPIF1<0对应的区间分别为:SKIPIF1<0,则SKIPIF1<0,即有SKIPIF1<0个SKIPIF1<0;SKIPIF1<0对应的区间分别为:SKIPIF1<0,则SKIPIF1<0,即有SKIPIF1<0个SKIPIF1<0;SKIPIF1<0对应的区间分别为:SKIPIF1<0,则SKIPIF1<0,即有SKIPIF1<0个SKIPIF1<0;SKIPIF1<0对应的区间分别为:SKIPIF1<0,则SKIPIF1<0,即有SKIPIF1<0个SKIPIF1<0;SKIPIF1<0对应的区间分别为:SKIPIF1<0,则SKIPIF1<0,即有SKIPIF1<0个SKIPIF1<0.所以SKIPIF1<0.6.(2016•新课标Ⅱ,理17)SKIPIF1<0为等差数列SKIPIF1<0的前SKIPIF1<0项和,且SKIPIF1<0,SKIPIF1<0,记SKIPIF1<0,其中SKIPIF1<0表示不超过SKIPIF1<0的最大整数,如SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(Ⅱ)求数列SKIPIF1<0的前1000项和.【解析】(Ⅰ)SKIPIF1<0为等差数列SKIPIF1<0的前SKIPIF1<0项和,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.可得SKIPIF1<0,则公差SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅱ)由(Ⅰ)可知:SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.数列SKIPIF1<0的前1000项和为:SKIPIF1<0.7.(2015湖南)设数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,已知SKIPIF1<0,且SKIPIF1<0SKIPIF1<0.(Ⅰ)证明:SKIPIF1<0;(Ⅱ)求SKIPIF1<0.【解析】(Ⅰ)由条件,对任意,有SKIPIF1<0SKIPIF1<0,因而对任意,有SKIPIF1<0SKIPIF1<0,两式相减,得,即,又,所以,故对一切,.(Ⅱ)由(Ⅰ)知,,所以,于是数列是首项,公比为3的等比数列,数列是首项,公比为3的等比数列,所以,于是.从而,综上所述,8.(2013安徽)设数列满足,,且对任意,函数,满足(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.【解析】(Ⅰ)由,SKIPIF1<0SKIPIF1<0所以,∴SKIPIF1<0是等差数列.而,,,,(Ⅱ)考点62裂项相消法求和1.(2020浙江20)已知数列{an},{bn},{cn}中,SKIPIF1<0.(Ⅰ)若数列{bn}为等比数列,且公比SKIPIF1<0,且SKIPIF1<0,求q与an的通项公式;(Ⅱ)若数列{bn}为等差数列,且公差SKIPIF1<0,证明:SKIPIF1<0.【答案】(I)SKIPIF1<0;(II)证明见解析【思路导引】(I)根据SKIPIF1<0,求得SKIPIF1<0,进而求得数列SKIPIF1<0的通项公式,利用累加法求得数列SKIPIF1<0的通项公式.(II)利用累乘法求得数列SKIPIF1<0的表达式,结合裂项求和法证得不等式成立.【解析】(I)依题意SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,∴解得SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0,∴数列SKIPIF1<0是首项为SKIPIF1<0,公比为SKIPIF1<0的等比数列,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0(SKIPIF1<0).∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.(II)依题意设SKIPIF1<0,由于SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0.由于SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.2.(2017•新课标Ⅱ,理15)等差数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0.【答案】SKIPIF1<0【解析】等差数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,数列的首项为1,公差为1,∴SKIPIF1<0,∴SKIPIF1<0,则SKIPIF1<0.3.(2017•新课标Ⅲ,文17)设数列SKIPIF1<0满足SKIPIF1<0.(1)求SKIPIF1<0的通项公式;(2)求数列SKIPIF1<0的前SKIPIF1<0项和.【解析】(1)数列SKIPIF1<0满足SKIPIF1<0.SKIPIF1<0时,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.当SKIPIF1<0时,SKIPIF1<0,上式也成立.SKIPIF1<0.(2)SKIPIF1<0.SKIPIF1<0数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.4.(2015新课标Ⅰ,理17)SKIPIF1<0为数列{SKIPIF1<0}的前n项和.已知SKIPIF1<0>0,SKIPIF1<0=QUOTESKIPIF1<0.(Ⅰ)求{SKIPIF1<0}的通项公式:(Ⅱ)设,求数列}的前n项和【解析】(Ⅰ)当SKIPIF1<0时,SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0=3,当SKIPIF1<0时,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,即SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0=2,所以数列{SKIPIF1<0}是首项为3,公差为2的等差数列,所以SKIPIF1<0=SKIPIF1<0;(Ⅱ)由(Ⅰ)知,SKIPIF1<0=SKIPIF1<0,所以数列{SKIPIF1<0}前n项和为SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.5.(2013新课标Ⅰ,文17)已知等差数列{SKIPIF1<0}的前n项和SKIPIF1<0满足SKIPIF1<0=0,SKIPIF1<0=-5.(Ⅰ)求{SKIPIF1<0}的通项公式;(Ⅱ)求数列{SKIPIF1<0}的前n项和.【解析】(Ⅰ)由SKIPIF1<0=0,SKIPIF1<0=-5得,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0=1,SKIPIF1<0=-1,∴SKIPIF1<0=SKIPIF1<0;(Ⅱ)由已知SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴数列{SKIPIF1<0}的前n项和为SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.6.(2011新课标,理17)等比数列{SKIPIF1<0}的各项均为整数,且SKIPIF1<0=1,SKIPIF1<0=SKIPIF1<0,(Ⅰ)求数列{SKIPIF1<0}的通项公式;(Ⅱ)设SKIPIF1<0=SKIPIF1<0,求数列{SKIPIF1<0}的前SKIPIF1<0项和.【解析】(Ⅰ)设数列{SKIPIF1<0}的公比为SKIPIF1<0,由SKIPIF1<0=SKIPIF1<0得SKIPIF1<0=SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0,由条件可知SKIPIF1<0>0,故SKIPIF1<0=SKIPIF1<0.由SKIPIF1<0=1得SKIPIF1<0=1,所以SKIPIF1<0=SKIPIF1<0,故数列{SKIPIF1<0}的通项公式为SKIPIF1<0=SKIPIF1<0.(Ⅱ)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0故SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0所以数列{SKIPIF1<0}的前SKIPIF1<0项和为SKIPIF1<0.7.(2016年天津高考)已知SKIPIF1<0是各项均为正数的等差数列,公差为SKIPIF1<0,对任意的SKIPIF1<0,SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中项.(Ⅰ)设SKIPIF1<0,求证:数列SKIPIF1<0是等差数列;(Ⅱ)设SKIPIF1<0,求证:SKIPIF1<0【解析】(Ⅰ)由题意得SKIPIF1<0,有SKIPIF1<0,因此SKIPIF1<0,所以数列SKIPIF1<0是等差数列.(Ⅱ)SKIPIF1<0 SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0.8.(2011安徽)在数1和100之间插入SKIPIF1<0个实数,使得这SKIPIF1<0个数构成递增的等比数列,将这SKIPIF1<0个数的乘积记作SKIPIF1<0,再令SKIPIF1<0SKIPIF1<0.(Ⅰ)求数列SKIPIF1<0的通项公式;(Ⅱ)设SKIPIF1<0求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【解析】(Ⅰ)设SKIPIF1<0构成等比数列,其中SKIPIF1<0则SKIPIF1<0①SKIPIF1<0②①×②并利用SKIPIF1<0SKIPIF1<0(Ⅱ)由题意和(Ⅰ)中计算结果,知SKIPIF1<0另一方面,利用SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0SKIPIF1<09.(2014山东)已知等差数列SKIPIF1<0的公差为2,前SKIPIF1<0项和为SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列.(Ⅰ)求数列SKIPIF1<0的通项公式;(Ⅱ)令SKIPIF1<0=SKIPIF1<0求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【解析】(Ⅰ)SKIPIF1<0解得SKIPIF1<0(Ⅱ)SKIPIF1<0,当SKIPIF1<0为偶数时SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.10.(2013广东)设各项均为正数的数列的前项和为,满足SKIPIF1<0,SKIPIF1<0,且构成等比数列.(Ⅰ)证明:;(Ⅱ)求数列的通项公式;(Ⅲ)证明:对一切正整数,有.【解析】(Ⅰ)当时,,(Ⅱ)当时,,,当时,是公差的等差数列.构成等比数列,,,解得,由(Ⅰ)可知,是首项,公差的等差数列.数列的通项公式为.(Ⅲ)考点63错位相减法1.(2020全国Ⅲ理17)设等差数列SKIPIF1<0满足SKIPIF1<0.(1)计算SKIPIF1<0,猜想SKIPIF1<0的通项公式并加以证明;(2)求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【思路导引】(1)利用递推公式得出SKIPIF1<0,猜想得出SKIPIF1<0的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【解析】(1)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…猜想SKIPIF1<0的通项公式为SKIPIF1<0.证明如下:(数学归纳法)当SKIPIF1<0时,显然成立;(1)假设SKIPIF1<0时,即SKIPIF1<0成立;其中SKIPIF1<0,由SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)故假设成立,综上(1)(2),∴SKIPIF1<0SKIPIF1<0(2)解法一:令SKIPIF1<0,则前项和SKIPIF1<0(1)由(1)两边同乘以2得:SKIPIF1<0(2)由(1)SKIPIF1<0(2)的SKIPIF1<0,化简得SKIPIF1<0.解法二:由(1)可知,SKIPIF1<0SKIPIF1<0,①SKIPIF1<0,②由①SKIPIF1<0②得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.2.(2014新课标I,文17)已知{SKIPIF1<0}是递增的等差数列,SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的根。(=1\*ROMANI)求{SKIPIF1<0}的通项公式;(=2\*ROMANII)求数列{SKIPIF1<0}的前SKIPIF1<0项和.【解析】(=1\*ROMANI)设数列{SKIPIF1<0}的公差为SKIPIF1<0,方程SKIPIF1<0两根为2,3,由题得SKIPIF1<0=2,SKIPIF1<0=3,在SKIPIF1<0-SKIPIF1<0=2SKIPIF1<0,故SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∴数列{SKIPIF1<0}的通项公式为SKIPIF1<0=SKIPIF1<0.……6分(=2\*ROMANII)设数列{SKIPIF1<0}的前SKIPIF1<0项和为SKIPIF1<0,由(=1\*ROMANI)知,SKIPIF1<0=SKIPIF1<0,则SKIPIF1<0=SKIPIF1<0,①SKIPIF1<0=SKIPIF1<0,②①-②得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0.……12分3.(2015浙江)已知数列SKIPIF1<0和SKIPIF1<0满足,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(Ⅰ)求SKIPIF1<0与SKIPIF1<0;(Ⅱ)记数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,求SKIPIF1<0.【解析】(Ⅰ)由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.当SKIPIF1<0时,SKIPIF1<0故SKIPIF1<0.当SKIPIF1<0SKIPIF1<0时,SKIPIF1<0整理得SKIPIF1<0所以SKIPIF1<0.(Ⅱ)由(Ⅰ)知,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.4.(2013湖南)设为数列{}的前项和,已知,2,N(Ⅰ)求,,并求数列的通项公式;(Ⅱ)求数列{}的前项和.【解析】(Ⅰ)SKIPIF1<0SKIPIF1<0SKIPIF1<0-SKIPIF1<0(Ⅱ)SKIPIF1<0SKIPIF1<0上式左右错位相减:SKIPIF1<0SKIPIF1<0。5.(2016年山东高考)已知数列的前n项和SKIPIF1<0,是等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)令求数列的前n项和Tn.【解析】(Ⅰ)因为数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0,所以SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,又SKIPIF1<0对SKIPIF1<0也成立,所以SKIPIF1<0.又因为SKIPIF1<0是等差数列,设公差为SKIPIF1<0,则SKIPIF1<0.当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0,解得SKIPIF1<0,所以数列SKIPIF1<0的通项公式为SKIPIF1<0.(Ⅱ)由SKIPIF1<0,于是SKIPIF1<0,两边同乘以2,得SKIPIF1<0,两式相减,得SKIPIF1<0SKIPIF1<0SKIPIF1<0.6.(2015湖北)设等差数列SKIPIF1<0的公差为SKIPIF1<0,前SKIPIF1<0项和为SKIPIF1<0,等比数列SKIPIF1<0的公比为SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求数列SKIPIF1<0,SKIPIF1<0的通项公式;(Ⅱ)当SKIPIF1<0时,记SKIPIF1<0,求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【解析】(Ⅰ)由题意有,SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.(Ⅱ)由SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,于是SKIPIF1<0,①SKIPIF1<0.②①-②可得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.7.(2013山东)设等差数列的前项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和,且(λ为常数),令(SKIPIF1<0).求数列的前项和.【解析】(Ⅰ)设等差数列的首项为SKIPIF1<0,公差为SKIPIF1<0,由,得,解得,,.因此.(Ⅱ)由题意知:所以时,故,所以,则两式相减得整理得,所以数列的前SKIPIF1<0项和.8.(2017山东)已知SKIPIF1<0是各项均为正数的等比数列,且SKIPIF1<0,SKIPIF1<0.(Ⅰ)求数列SKIPIF1<0的通项公式;(Ⅱ)如图,在平面直角坐标系SKIPIF1<0中,依次连接点SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0得到折线SKIPIF1<0SKIPIF1<0…SKIPIF1<0,求由该折线与直线SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所围成的区域的面积.【解析】(Ⅰ)设数列的公比为SKIPIF1<0,由已知SKIPIF1<0.由题意得,所以,因为SKIPIF1<0,所以,因此数列的通项公式为(Ⅱ)过…,向轴作垂线,垂足分别为…,,由(Ⅰ)得记梯形的面积为.由题意,所以…+=…+①又…+②①SKIPIF1<0②得=所以9.(2017天津)已知SKIPIF1<0为等差数列,前n项和为SKIPIF1<0,SKIPIF1<0是首项为2的等比数列,且公比大于0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0和SKIPIF1<0的通项公式;(Ⅱ)求数列SKIPIF1<0的前n项和SKIPIF1<0.【解析】(Ⅰ)设等差数列SKIPIF1<0的公差为SKIPIF1<0,等比数列SKIPIF1<0的公比为SKIPIF1<0.由已知SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.又因为SKIPIF1<0,解得SKIPIF1<0.所以,SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0①.由SKIPIF1<0,可得SKIPIF1<0②,联立①②,解得SKIPIF1<0,SKIPIF1<0,由此可得SKIPIF1<0.所以,数列SKIPIF1<0的通项公式为SKIPIF1<0,数列SKIPIF1<0的通项公式为SKIPIF1<0.(Ⅱ)设数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,上述两式相减,得SKIPIF1<0SKIPIF1<0得SKIPIF1<0.所以,数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0.10.(2015湖北)设等差数列SKIPIF1<0的公差为d,前n项和为SKIPIF1<0,等比数列SKIPIF1<0的公比为q.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求数列SKIPIF1<0,SKIPIF1<0的通项公式;(Ⅱ)当SKIPIF1<0时,记SKIPIF1<0,求数列SKIPIF1<0的前n项和SKIPIF1<0.【解析】(Ⅰ)由题意有,SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.(Ⅱ)由SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,于是SKIPIF1<0,①SKIPIF1<0.②①-②可得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.11.(2014四川)设等差数列SKIPIF1<0的公差为SKIPIF1<0,点SKIPIF1<0在函数SKIPIF1<0的图象上(SKIPIF1<0).(Ⅰ)若SKIPIF1<0,点SKIPIF1<0在函数SKIPIF1<0的图象上,求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0;(Ⅱ)若SKIPIF1<0,函数SKIPIF1<0的图象在点SKIPIF1<0处的切线在SKIPIF1<0轴上的截距为SKIPIF1<0,求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【解析】(Ⅰ)点SKIPIF1<0在函数SKIPIF1<0的图象上,所以SKIPIF1<0,又等差数列SKIPIF1<0的公差为SKIPIF1<0,所以SKIPIF1<0.因为点SKIPIF1<0在函数SKIPIF1<0的图象上,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.(Ⅱ)由SKIPIF1<0,函数SKIPIF1<0的图象在点SKIPIF1<0处的切线方程为SKIPIF1<0所以切线在SKIPIF1<0轴上的截距为SKIPIF1<0,从而SKIPIF1<0,故SKIPIF1<0从而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0故SKIPIF1<0.12.(2012浙江)已知数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,且SKIPIF1<0=,n∈N﹡,数列SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0;(Ⅱ)求数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.【解析】(Ⅰ)由SKIPIF1<0=,得当SKIPIF1<0=1时,;当SKIPIF1<02时,,SKIPIF1<0.由SKIPIF1<0,得,SKIPIF1<0.(Ⅱ)由(1)知,SKIPIF1<0所以,,,SKIPIF1<0.考点64并项法与倒序求和法1.(2011安徽)若数列的通项公式是SKIPIF1<0,则SKIPIF1<0=A.15B.12C.-12D.-15【答案】A【解析】SKIPIF1<0SKIPIF1<0.考点65数列综合问题1.(2017•新课标Ⅰ,理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,SKIPIF1<0,其中第一项是SKIPIF1<0,接下来的两项是SKIPIF1<0,SKIPIF1<0,再接下来的三项是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,依此类推.求满足如下条件的最小整数SKIPIF1<0且该数列的前SKIPIF1<0项和为2的整数幂.那么该款软件的激活码是SKIPIF1<0SKIPIF1<0A.440 B.330 C.220 D.110【解析】设该数列为SKIPIF1<0,设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,由题意可设数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0,则SKIPIF1<0,可知当SKIPIF1<0为SKIPIF1<0时SKIPIF1<0,数列SKIPIF1<0的前SKIPIF1<0项和为数列SKIPIF1<0的前SKIPIF1<0项和,即为SKIPIF1<0,容易得到SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0项,由SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0,故SKIPIF1<0项符合题意.SKIPIF1<0项,仿上可知SKIPIF1<0,可知SKIPIF1<0,显然不为2的整数幂,故SKIPIF1<0项不符合题意.SKIPIF1<0项,仿上可知SKIPIF1<0,可知SKIPIF1<0,显然不为2的整数幂,故SKIPIF1<0项不符合题意.SKIPIF1<0项,仿上可知SKIPIF1<0,可知SKIPIF1<0,显然不为2的整数幂,故SKIPIF1<0项不符合题意.故选SKIPIF1<0.2.(2016•新课标Ⅲ,理12)定义“规范01数列”SKIPIF1<0如下:SKIPIF1<0共有SKIPIF1<0项,其中SKIPIF1<0项为0,SKIPIF1<0项为1,且对任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中0的个数不少于1的个数,若SKIPIF1<0,则不同的“规范01数列”共有SKIPIF1<0SKIPIF1<0A.18个 B.16个 C.14个 D.12个【答案】C【解析】由题意可知,“规范01数列”有偶数项SKIPIF1<0项,且所含0与1的个数相等,首项为0,末项为1,若SKIPIF1<0,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个,故选SKIPIF1<0.3.(2013新课标Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,…若b1>c1,b1+c1=2a1,an+1=an,bn+1=eq\f(cn+an,2),cn+1=eq\f(bn+an,2),则( )A.{Sn}为递减数列 B。{Sn}为递增数列QUOTE C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列 【答案】B【解析】∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0+SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0+SKIPIF1<0-SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,由余弦定理得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0>SKIPIF1<0(∵SKIPIF1<0),∴SKIPIF1<0>SKIPIF1<0,故SKIPIF1<0为递增数列,故选B.4.(2019浙江10)设a,b∈R,数列{an}中an=a,an+1=an2+b,,则A.当b=时,a10>10 B.当b=时,a10>10 C.当b=-2时,a10>10 D.当b=-4时,a10>10【答案】A【解析】对于B,令QUOTEx2-λ+14=0,得QUOTEλ=12,
取QUOTEa1=12,所以QUOTE∴a2=12,…,an=12<10,
所以QUOTE∴当QUOTEb=14时,QUOTEa10<10,故B错误;
对于C,令QUOTEx2-λ-2=0,得QUOTEλ=2或QUOTEλ=-1,
取QUOTEa1=2,所以QUOTE∴a2=2,所以QUOTE∴当QUOTEb=-2时,QUOTEa10<10,故C错误;
对于D,令QUOTEx2-λ-4=0,得QUOTEλ=1±172,取QUOTEa1=1+172,所以QUOTE∴a2=1+172,QUOTE……,QUOTEan=1+172<10,
所以当QUOTEb=-4时,QUOTEa10<10,故D错误;
对于A,QUOTEa2=a2+12≥12,QUOTEa3=(a2+12)2+12≥34,QUOTEa4=(a4+a2+34)2+12≥916+12=1716>1,
QUOTEan+1-an>0,QUOTE{an}递增,当QUOTEn≥4时,QUOTEan+1an=an+12an>1+12=32,所以QUOTE∴a5a4>32a4a5>32⋅⋅⋅a10a9>32,所以QUOTE∴a10a4>(32)6,所以QUOTE∴a10>72964>10.故A正确.故选A.5.(2015湖北)设SKIPIF1<0,SKIPIF1<0.若p:SKIPIF1<0成等比数列;q:SKIPIF1<0SKIPIF1<0,则A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025公司项目部管理人员安全培训考试试题(新)
- 2025企业安全培训考试试题考题
- 2024-2025工厂职工安全培训考试试题【能力提升】
- 2025合作伙伴关系确立合同书范本
- 2025电子产品赠送的合同范本
- 2025年大型无菌包装机合作协议书
- 2025健康管理中心连锁加盟合同书
- 2025标准办公室租赁合同
- 2025年兼职翻译服务合同范本
- 2025年兼职多职未签订合同男子失业又面临法律诉讼管理资料纠纷
- 电网工程设备材料信息参考价(2024年第四季度)
- 涂料色浆MSDS-涂料色浆化学品安全技术说明书范本
- 精品课程《人文地理学》完整版
- 静脉采血评分标准
- 水质检测公司检测报告(模板)
- 基于PLC步进电机控制系统设计
- 小学班主任工作案例分析4篇
- 医院感染台账【范本模板】
- DB43∕T 497-2009 博落回果-行业标准
- 创意综艺风脱口秀活动策划PPT模板
- 大客户营销技巧ppt课件
评论
0/150
提交评论