2023年河南省驻马店市学业水平考试九年级数学试题(含解析)_第1页
2023年河南省驻马店市学业水平考试九年级数学试题(含解析)_第2页
2023年河南省驻马店市学业水平考试九年级数学试题(含解析)_第3页
2023年河南省驻马店市学业水平考试九年级数学试题(含解析)_第4页
2023年河南省驻马店市学业水平考试九年级数学试题(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页2023年河南省驻马店市学业水平考试九年级数学试题(含解析)2023年河南省初中学业水平模拟考试

数学试题卷(四)

注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.

一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.

1.下列实数中,最小的数是()

A.-2023B.C.D.2023

2.如图是由6个相同的小正方体组成的几何体,其左视图是()

A.B.C.D.

3.如图,,垂足为点O,直线CD经过点O,若,则的度数为()

A.B.C.D.

4.在“百度搜索”中,输入“2023全国人大”,百度为您找到相关结果约100000000个.将100000000用科学记数法表示为()

A.B.C.D.

5.下列运算正确的是()

A.B.C.D.

6.如图,点O为菱形ABCD的对角线AC、BD的交点,点M、N分别为边AB、BC的中点,连接MN.若,,则菱形的周长为()

A.B.12C.D.16

7.已知关于x的一元二次方程,有不相等实数根,则实数k的取值范围是()

A.B.且C.且D.且

8.学校倡导“科学用眼,保护视力”,某班50名同学的视力检查数据如下表:

视力4.34.44.54.64.74.84.95.0

人数2369121053

则视力的众数是()

A.4.8B.4.7C.4.6D.4.5

9.如图,中,,以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于的长为半径画弧,两弧交点K,作射线CK;以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.过点D作交AB的延长线于点F,若,,则CE长为()

A.13B.C.D.

10.如图1所示,在甲、乙两地之间有汽车站丙,客车由甲地驶往丙站,货车由乙地驶往甲地.两车同时出发匀速行驶.图2是客车、货车离丙站的距离y(千米)与行驶时间x(小时)之间的函数关系图象.则下列结论中,错误的是()

A.甲、乙两地相距440千米B.客车速度比货车速度快20千米/时

C.货车行驶11小时后到达甲地D.图2中,交点N的坐标是

二、填空题(每小题3分,共15分)

11.写出一个图象经过二四象限且关于原点对称的函数的解析式______.

12.在实数范围内规定新运算“”,其规则是:,已知不等式的解集在数轴上如图表示,则a的值是______.

13.已知关于x的一元二次方程.从-4,-2,0,2,4中任选一个数字作为k代入原方程,则选取的数字能令方程有实数根的概率为______.

14.有一块斜边长16cm的直角三角尺角,它的锐角为45°,还有一根直尺,长边的长为12cm,短边的长为4cm.如图1,将直尺的短边DE与直角三角尺的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图2,图3设平移的长度为,当直尺与直角三角尺重合部分的面积(即图中阴影部分)第二次为时,x的值为______.

15.如图,在矩形ABCD中,,,E是BC的中点,连接AE,P是边AD上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点处,当是直角三角形时,______.

三、解答题(本大题共8个小题,共75分)

16.(10分)(1)计算:;

(2)化简:.

17.(9分)每年春季都是流感高发期.为“预防流感,守护健康”增强学生防疫意识,某中学八、九年级举办了防疫知识问答竞赛.现八、九级各随机抽取了20名学生的知识竞赛分数(单位:分)进行整理和分析,当分数不低于95分为优秀,下面给出部分信息.

八、九年级被抽取的学生防疫知识竞赛分数的中位数、众数、优秀率如下表:

年级中位数众数优秀率

八年级a95n%

九年级95b60%

(1)填空:a=______;b=______;m=______;n=______;并补全条形统计图;

(2)若该校八、九年级各有500名学生,估计这两个年级的学生知识竞赛成绩优秀的总人数.

(3)根据以上数据分析,你认为八、九年级哪个年级防疫知识掌握的更好?请说明理由(写出一条理由即可)

18.(9分)如图,反比例函数的图象与一次函数的图象交于第二象限的点A、点B,与x轴交于点C,其中点A的坐标为,点B的到y轴的距离为2.

(1)试确定反比例函数的关系式;

(2)请用无刻度的直尺和圆规作出点O关于直线的对称点(要求:不写作法,保留作图痕迹);

(3)点O,A,B与(2)中的点,组成四边形.求证:四边形是菱形.

19.(9分)大疆创新致力于成为持续推动人类进步的科技公司.大疆无人机被广泛应用到实际生活中,小刚利用无人机来测量广场B,C两点之间的距离.如图所示,小刚站在广场的B处遥控无人机,无人机在A处距离地面的高度是81.7m,此时从无人机测得广场C处的俯角为,他抬头看无人机时,仰角为,若小刚的身高,(点A、E、B、C在同一平面内).求B,C两点之间的距离.(计算结果精确到0.1m(参考数据:,,,,,)

20.(9分)某文具经销商计划用4500元从厂家购进签字笔若干盒,每盒100支,已知该厂家生产A、B、C三种规格的签字笔,进价分别是A种每支1.5元,B种每支2元,C种每支2.5元.

(1)若经销商同时购进两种不同规格的签字笔共20盒,并将4500元恰好用完,请你帮助经销商计算一下不同规格的签字笔各购进多少盒?

(2)若经销商准备用4500元同时购进A、B、C三种规格的签字笔共20盒(整盒购进),每种规格都要买,且将4500元恰好用完,请你设计进货方案.

21.(9分)如图,一个半圆O和一个含角的直角三角板ABC放置在一起的示意图,其中直角顶点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OE,连接OF,CF.

(1)求证:四边形OBCF为平行四边形;

(2)当时,若以O,B,F为顶点的三角形与相似,求阴影部分的周长;

(3)若,移动三角板ABC且使边AB始终与半圆O相切,直角顶点B在直径DE的延长线上移动,直接写出点B移动的最大距离.

22.(10分)在平面直角坐标系xOy中,抛物线.

(1)当抛物线过点时,求抛物线的表达式;

(2)求这个二次函数的顶点坐标(用含m的式子表示);

(3)若抛物线上存在两点和,其中.当时,求m的取值范围.

23.(10分)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动.

(1)操作判断操作:如图1,点E是边长为12的正方形纸片ABCD的边AD上一动点,将正方形沿着CE折叠,点D落在点F处,把纸片展平,射线DF交射线AB于点P.

判断:根据以上操作,图1中AP与EF的数量关系:____________.

(2)迁移探究在(1)条件下,若点E是AD的中点,如图2,延长CF交AB于点Q.点Q的位置是否确定?如果确定求出线段BP的长度,如果不确定,说明理由;

(3)拓展应用在(1)条件下,如图3,CE,DF交于点G,取CG的中点H,连结BH,则BH的最小值是______.

数学模拟(四)参考答案

一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.

1.A;

2.A;

【解析】从几何体的左面看,共有两列,从左到右小正方形的个数分别为2、1,故选:A.

3.D;

【解析】,

∵,

∴.

∴.故选:D.

4.A;

5.B.

【解析】,不符合题意;

,符合题意;

,不符合题意;

,不符合题意;

故选:B.

6.D;

【解析】∵点、是和的中点,即是的中位线,

∴.

∴,.

在中,.

所以菱形的周长为16.

故答案为:D.

7.B;

【解析】若一元二次方程有不相等实数根,

且△,

解得且.

故的取值范围是且;故选:B;

8.B;

【解析】由表知,视力为4.7的人数最多,有12人,

所以视力的众数为4.7,

故选:B.

9.;

【解析】由作图知,平分,

在和中,

,,

,,,

设,

在中,则有,

故选:D.

10.D;

【解析】时,的值为80和360,

所以甲,乙两地相距(千米),故选项不符合题意;

客车的速度为:(千米小时),

货车的速度为:(千米小时),

所以客车速度比货车速度快20千米时,故选项不符合题意;

(小时),

即货车行驶11小时后到达甲地,故选项不符合题意;

(小时),

即客、货两车4.4小时相遇,

相遇时离乙地:(千米).

即图2中,交点的坐标是,故选项符合题意.故选:.

二、填空题(每小题3分,共15分)

11.(答案不唯一).

【解析】图象是中心对称图形,

设反比例函数解析式为,

图象经过第二、四象限,

,取,

反比例函数解析式,

故答案为:(答案不唯一).

12.;【解析】根据图示,已知不等式的解集是.

因为,

所以,

所以.

所以.

所以.

13.;【解析】一元二次方程有两个不相等的实数根,

且,

即且;

∴且.

故给定的5个数字中,,2,0能令方程有实数根,

故选取的数字能令方程有实数根的概率为.

14.;【解析】当时,必然大于4,即,

解得:.

<,

故当,时,阴影部分面积第二次为.

15.或.【解析】在矩形中,,,

,,

是的中点,

沿过点的直线将矩形折叠,使点落在上的点处,

设,则,

当是直角三角形时,

①当时,

△,

②当时,

综上所述,当是直角三角形时,为或.

三、解答题(本大题共8个小题,共75分)

16.(10分)

解:(1)原式………………………(3分)

;………………………(5分)

(2)原式……………………(6分)

…………………(8分)

.………………(10分)

17.解:(1)八年级被抽取学生防疫知识竞赛成绩为95分的人数为(人),

其中位数,…………(1分)

由扇形统计图知九年级被抽取学生防疫知识竞赛成绩为100分的人数最多,

所以其中位数,…………………(2分)

九年级成绩优秀的人数为(人),

得分为100分的人数为(人),

得分为100分的人数所占百分比为,

,即,………………(3分)

八年级成绩优秀的人数所占百分比,即,…………(4分)

补全图形如下:

;………(5分)

(2)(人),

答:这两个年级的学生知识竞赛成绩优秀的总人数是550;…………(7分)

(3)我认为九年级更优秀,

理由如下:九年级中位数95大于八年级中位数92.5,所以九年级更优秀.…………(9分)

18.(1)将点的坐标代入反比例函数中得:,

反比例函数的关系式为;……………(3分)

(2)如图,点关于直线的对称点.

…………(5分)

(3)点的坐标为,

∴.

点在第二象限且到轴的距离为,

∴.

∴.

∴.…………………(6分)

∴.

∴.(7分)

根据(2)中的作图可知道,………(8分)

所以四边形是菱形.…………………(9分)

19.解:过点作于点,过点作于点.

由题意可得,,,,,

∴,……………………(2分)

在中,,,

解得,……………(4分)

在中,,,

∴,

∴,………………(6分)

∴.…………(8分)

答:,两点之间的距离约为.……………………(9分)

20.解:(1)设A种签字笔购买x盒,B种签字笔购买y盒,C种签字笔购买z盒.

①若购进A、B两种签字笔,根据题意得:,

②若购进A、C两种签字笔,根据题意得:

,…………(2分)

③若购进B、C两种签字笔,根据题意得:

,……………(3分)

所以,有两种购买方案:

①购进A种签字笔5盒,C种签字笔15盒;

②购进B种签字笔10盒,C种签字笔10盒…………………(5分)

(2)设A种签字笔购买a盒,B种签字笔购买b盒,C种签字笔购买c盒.

由题意得:a+b+c=20;

1.5×100a+2×100b+2.5×100c=4500,即2a+b=10,

∴b=﹣2a+10,…………………(6分)

∵a、b、c都是正整数

∴共有以下4种购买方案,具体如下:

方案1:A种4盒,B种2盒,C种14盒;

方案2:A种3盒,B种4盒,C种13盒;

方案3:A种2盒,B种6盒,C种12盒;

方案4:A种1盒,B种8盒,C种11盒;…………(9分)

21.(9分)解:(1)证明:∵AB切半圆O于点F,OF是半径,

∴∠OFB=90°,

∵∠ABC=90°,

∴∠OFB=∠ABC,

∴OF∥BC,

∵BC=OE,OE=OF,

∴BC=OF,

∴四边形OBCF是平行四边形2分

(2)解:根据题意,需要分两种情况:

若△OBF∽△ACB,

∴,

∴,

∵∠A=30°,∠ABC=90°,BC=OE=1,

∴AC=2,.

又∵OF=OE=1,

∴OB=,

∴BF=.

∴阴影部分的周长为:

若△BOF∽△ACB,

∴,

∴OB=,

∴BF=.

∴阴影部分的周长为:.

综上,阴影部分的周长为或;6分

(3)解:画出移动过程中的两个极值图,

由图知:点B移动的最大距离是线段BE的长,

∵∠BAC=30°,

∴∠ABO=30°,

∵,

∴.

∴.

∴点B移动的最大距离是线段BE的长为29分

22.解:(1)将代入,得.

解得,

.…………(3分)

(2)∵,

抛物线对称轴为直线,

把代入得,,

二次函数的顶点坐标为;………………(6分)

(3)将代入得,

将代入得,

当时,则,

.……………………(7分)

.

.……………(8分)

当和同号时,不等式成立,可分两种情况讨论:

①当,时,,

时,;

②当,时,,

时满足题意,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论