版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MachineLearning09八月2023MachineLearning08八月20231Machinelearning,asabranchofartificialintelligence,isgeneraltermsofakindofanalyticalmethod.Itmainlyutilizescomputersimulateorrealizethelearnedbehaviorofhuman.09八月2023Machinelearning,asabranch209八月20231)Machinelearningjustlikeatruechampionwhichgohaughtily;
2)Patternrecognitioninprocessofdeclineanddieout;
3)Deeplearningisabrand-newandrapidlyrisingfield.theGooglesearchindexofthreeconceptsince200408八月20231)Machinelearningj309八月2023Theconstructedmachinelearningsystembasedoncomputermainlycontainstwocoreparts:representationandgeneralization.Thefirststepfordatalearningistorepresentthedata,i.e.detectthepatternofdata.Establishageneralizedmodelofdataspaceaccordingtoagroupofknowndatatopredictthenewdata.Thecoretargetofmachinelearningistogeneralizefromknownexperience.Generalizationmeansapowerofwhichthemachinelearningsystemtobelearnedforknowndatathatcouldpredictthenewdata.08八月2023Theconstructedmach4SupervisedlearningInputdatahaslabels.Thecommonkindoflearningalgorithmisclassification.Themodelhasbeentrainedviathecorrespondencebetweenfeatureandlabelofinputdata.Therefore,whensomeunknowndatawhichhasfeaturesbutnolabelinput,wecanpredictthelabelofunknowndataaccordingtotheexistingmodel.09八月2023Supervisedlearning08八月20235UnsupervisedlearningInputdatahasnolabels.Itrelatestoanotherlearningalgorithm,i.e.clustering.Thebasicdefinitionisacoursethatdividethegatherofphysicalorabstractobjectintomultipleclasswhichconsistofsimilarobjects.09八月2023Unsupervisedlearning08八月2026Iftheoutputeigenvectormarkscomefromalimitedsetthatconsistofclassornamevariable,thenthekindofmachinelearningbelongstoclassificationproblem.
Ifoutputmarkisacontinuousvariable,thenthekindofmachinelearningbelongstoregressionproblem.09八月2023Iftheoutputeigenvectormark7ClassificationstepFeatureextractionFeatureselectionModeltrainingClassificationandpredictionRawdataNewdata09八月2023ClassificationstepFeatureext8Featureselection(featurereduction)CurseofDimensionality:Usuallyrefertotheproblemthatconcernedaboutcomputationofvector.Withtheincreaseofdimension,calculatedamountwilljumpexponentially.Corticalfeaturesofdifferentbrainregionsexhibitvarianteffectduringtheclassificationprocessandmayexistsomeredundantfeature.Inparticularafterthemultimodalfusion,theincreaseoffeaturedimensionwillcause“curseofDimensionality”.09八月2023Featureselection(featurered9PrincipalComponentAnalysis,PCAPCAisthemostcommonlineardimensionreductionmethod.Itstargetismappingthedataofhighdimensiontolow-dimensionspaceviacertainlinearprojection,andexpectthevarianceofdatathatprojectthecorrespondingdimensionismaximum.Itcanusefewerdatadimensionmeanwhileretainthemajorcharacteristicofrawdata.09八月2023PrincipalComponentAnalysis,10Lineardiscriminantanalysis,LDAThebasicideaofLDAisprojection,mappingtheNdimensiondatatolow-dimensionspaceandseparatethebetween-groupsassoonaspossible.i.e.theoptimalseparabilityinthespace.Thebenchmarkisthenewsubspacehasmaximumbetweenclassdistanceandminimalinter-objectdistance.09八月2023Lineardiscriminantanalysis,11Independentcomponentanalysis,ICAThebasicideaofICAistoextracttheindependencesignalfromagroupofmixedobservedsignaloruseindependencesignaltorepresentothersignal.09八月2023Independentcomponentanalysis12Recursivefeatureeliminationalgorithm,RFERFEisagreedyalgorithmthatwipeoffinsignificancefeaturestepbysteptoselectthefeature.Firstly,cyclicorderingthefeatureaccordingtotheweightofsub-featureinclassificationandremovethefeaturewhichrankatterminalonebyone.Then,accordingtothefinalfeatureorderinglist,selectdifferentdimensionofseveralfeaturesubsetfronttoback.Assesstheclassificationeffectofdifferentfeaturesubsetandthengettheoptimalfeaturesubset.
09八月2023Recursivefeatureelimination13Classificationalgorithm
DecisiontreeDecisiontreeisatreestructure.Eachnonleafnodeexpressesthetestofafeaturepropertyandeachbranchexpressestheoutputoffeaturepropertyincertainrangeandeachleafnodestoresaclass.Thedecision-makingcourseofdecisiontreeisstartingfromrootnode,testingthecorrespondingfeaturepropertyofwaitingobjects,selectingtheoutputbranchaccordingtotheirvalues,untilreachingtheleafnodeandtaketheclassthatleafnodestoreasthedecisionresult.09八月2023ClassificationalgorithmDecis14NaiveBayes,NBNBclassificationalgorithmisaclassificationmethodinstatistics.Ituseprobabilitystatisticsknowledgeforclassification.Thisalgorithmcouldapplytolargedatabaseandithashighclassificationaccuracyandhighspeed.09八月2023NaiveBayes,NB08八月202315Artificialneuralnetwork,ANNANNisamathematicalmodelthatapplyakindofstructurewhichsimilarwithsynapseconnectionforinformationprocessing.Inthismodel,amassofnodeformanetwork,i.e.neuralnetwork,toreachthegoalofinformationprocessing.Neuralnetworkusuallyneedtotrain.Thecourseoftrainingisnetworklearning.Thetrainingchangethelinkweightofnetworknodeandmakeitpossessthefunctionofclassification.Thenetworkaftertrainingapplytorecognizeobject.09八月2023Artificialneuralnetwork,ANN16k-NearestNeighbors,kNNkNNalgorithmisakindofclassificationmethodbaseonlivingexample.Thismethodistofindthenearestktrainingsampleswithunknownsamplexandexaminethemostofksamplesbelongtowhichclass,thenxbelongstothatclass.kNNisalazylearningmethod.Itstoressamplesbutproceedclassificationuntilneedtoclassify.Ifsamplesetarerelativelycomplex,itmaybeleadtolargecomputationoverhead.Soitcannotapplytostronglyreal-timeoccasion.09八月2023k-NearestNeighbors,kNN08八月17supportvectormachine,SVMMappingthelinearlyinseparabledatainlow-dimensionspacetohigh-dimensionspaceandmakeitlinearlyseparable09八月2023supportvectormachine,SVM0818Crossvalidation,CVThebasicideaofCVisgroupingtherawdatainasense.Onepartistakenastrainset,theotherpartistakenasvalidationset.Primarily,theclassifieristrainedwithtrainset,andthenusevalidationsettotestthereceivedmodelbytraining.09八月2023Crossvalidation,CVThebasic19K-foldcross-validationIn
k-foldcross-validation,theoriginalsampleisrandomlypartitionedinto
k
equalsizedsubsamples.Ofthe
k
subsamples,asinglesubsampleisretainedasthevalidationdatafortestingthemodel,andtheremaining
k
−
1subsamplesareusedastrainingdata.Thecross-validationprocessisthenrepeated
k
times(the
folds),witheachofthe
k
subsamplesusedexactlyonceasthevalidationdata.The
k
resultsfromthefoldscanthenbeaveragedtoproduceasingleestimation.Theadvantageofthismethodoverrepeatedrandomsub-samplingisthatallobservationsareusedforbothtrainingandvalidation,andeachobservationisusedforvalidationexactlyonce.10-foldcross-validationiscommonlyused.09八月2023K-foldcross-validation08八月220Leave-one-outcross-validation,LOOCVWhen
k
=
n
(thenumberofobservations),the
k-foldcross-validationisexactlytheleave-one-outcross-validation.09八月2023Leave-one-outcross-validation21confusionmatrixTP——goldstandardandtestaffirmsufferfromcertainillness;TN——goldstandardandtestaffirmnotsufferfromcertainillness;FP——go
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届新高考英语冲刺复习全国一卷语法填空题分析与解题方法探讨
- 失智老人照护培训课件
- 文库发布:杠杆课件
- 土木施工前安全教育培训课件
- 2024年横塘原文翻译及赏析
- 厦门乐队介绍
- 华阳安全培训app课件
- 补全对话(专项训练)-2025-2026学年人教PEP版(2024)英语三年级上册
- 企业安全员消防培训课件
- 信息技术合同与项目管理制度
- 幼儿园手指律动培训大纲
- 2023年萍乡辅警招聘考试真题及答案详解参考
- 浙江省嵊州市2025-2026学年高二上数学期末质量检测试题含解析
- 湖北省宜昌市秭归县2026届物理八年级第一学期期末学业水平测试模拟试题含解析
- 案场物业管理评估汇报
- 重庆水利安全员c证考试题库和及答案解析
- 【基于微信小程序的书籍共享平台的设计与实现14000字】
- 基金从业内部考试及答案解析
- 2025秋期版国开电大本科《理工英语4》一平台综合测试形考任务在线形考试题及答案
- 酒店水电改造工程方案(3篇)
- GB/T 23987.3-2025色漆和清漆实验室光源曝露方法第3部分:荧光紫外灯
评论
0/150
提交评论