浙江省舟山市芦花中学高一数学理月考试题含解析_第1页
浙江省舟山市芦花中学高一数学理月考试题含解析_第2页
浙江省舟山市芦花中学高一数学理月考试题含解析_第3页
浙江省舟山市芦花中学高一数学理月考试题含解析_第4页
浙江省舟山市芦花中学高一数学理月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省舟山市芦花中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,,则等于(

A.

B.

C.

D.参考答案:B略2.已知函数f(x)=,则f(3)的值等于()A.﹣2 B.﹣1 C.1 D.2参考答案:B【考点】3T:函数的值.【分析】根据分段函数的表达式直接代入即可.【解答】解:由分段函数可知,f(3)=f(2)﹣f(1),而f(2)=f(1)﹣f(0),∴f(3)=f(2)﹣f(1)=f(1)﹣f(0)﹣f(1)=﹣f(0)=﹣1,故选:B.3.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3

B.y=-1.2x+7.5C.y=1.6x+0.5

D.y=1.3x+1.2参考答案:C4.已知函数f(x)=x2?sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()A. B. C. D.参考答案:D【考点】函数的图象.【分析】先判断函数的奇偶性和,再令x=时,f()=﹣<0,问题得以解决.【解答】解:f(x)=x2?sin(x﹣π)=﹣x2?sinx,∴f(﹣x)=﹣(﹣x)2?sin(﹣x)=x2?sinx=﹣f(x),∴f(x)奇函数,∵当x=时,f()=﹣<0,故选:D【点评】本题考查了函数图象的识别,关键掌握函数的奇偶性和函数值得特点,属于基础题.5.程序框图如下:如果上述程序运行的结果为S=40,那么判断框中应填入:A.

B.

C.

D.

参考答案:B6.若,则的值等于

(

)

A2

B

C1

D参考答案:D略7.如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为()cm.A.12 B.13 C.14 D.15参考答案:B【分析】将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.8.下列函数中,既是偶函数又在区间上单调递增的是(

)A.

B.

C.

D.参考答案:D略9.函数的定义域为A.

B.

C.

D.参考答案:C略10.若函数的图象按向量平移后,得到函数的图象,则向量(

)A. B. C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.(4分)已知函数f(x)是R上的奇函数,g(x)是R上的偶函数,且g(x)=f(+x),则fg(+x)=

.参考答案:﹣f2(x)考点: 函数奇偶性的性质.专题: 函数的性质及应用.分析: 判断出f(+x)=f(﹣x),即f(x)=f(π﹣x),f(x+π)=f(﹣x)=﹣f(x),可判断:f(x+2π)=f(x)得出周期为2π,把f+g(+x)=f(x)f(π+x)=f(x)=﹣f(x)f(x)求解即可.解答: 解:∵函数f(x)是R上的奇函数,g(x)是R上的偶函数,∴f(﹣x)=﹣f(x),f(0)=0,g(﹣x)=g(x),∵g(x)=f(+x),∴f(+x)=f(﹣x),即f(x)=f(π﹣x),f(x+π)=f(﹣x)=﹣f(x)f(x+2π)=﹣f(x+π)=f(x)∴f(x)的周期为2π.∴fg(+x)=f(x)f(π+x)=f(x)=﹣f(x)f(x)=﹣f2(x)点评: 本题综合考查了函数的性质,性质与代数式的联系,属于中档题.12.若集合是单元素集,则

。参考答案:略13.设x,y∈R,A={(x,y)|y=x},B={(x,y)|=1},则A、B间的关系为________.参考答案:BA14.若函数f(x)=loga(ax2﹣2x+1)在区间[2,3]是减函数,则a取值范围为.参考答案:(,1)【考点】复合函数的单调性. 【专题】转化思想;综合法;函数的性质及应用. 【分析】令t=ax2﹣2x+1,则t>0在区间[2,3]上恒成立.再分0<a<1、a>1两种情况,分别根据二次函数的单调性、对数函数的单调性,求得a的范围,综合可得结论. 【解答】解:∵函数f(x)=loga(ax2﹣2x+1)在区间[2,3]是减函数, 令t=ax2﹣2x+1,则t>0在区间[2,3]上恒成立. ①当0<a<1时,∵f(x)=g(t)=logat,故二次函数t在区间[2,3]上为增函数, 再根据二次函数t的图象的对称轴为x=>1,故有,求得<a<1; ②当a>1时,根据二次函数t的图象的对称轴为x=<1,故二次函数t在区间[2,3]上为增函数, 函数f(x)=loga(ax2﹣2x+1)在区间[2,3]是增函数,不满足条件. 综上可得,a取值范围为(,1), 故答案为:(,1). 【点评】本题主要考查对数函数、二次函数的性质,复合函数的单调性,体现了转化的数学思想,属于中档题. 15.函数的定义域是________。参考答案:16.设函数的定义域和值域都是则

。参考答案:317.为了得到函数的图象,可将函数的图象向

平移

个单位.参考答案:右,1.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点.(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB1;(3)线段AB上是否存在点M,使得A1M⊥平面CDB1.参考答案:考点: 直线与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的性质.专题: 证明题;空间位置关系与距离.分析: (Ⅰ)由已知先证明CD⊥AB,又在直三棱柱ABC﹣A1B1C1中,AA1⊥CD,且AB∩AA1=A,即可证明CD⊥平面A1ABB1;(Ⅱ)连结BC1,设BC1与B1C的交点为E,连接DE,证得DE∥AC1;由线面平行的判定定理即可证明AC1∥平面CDB1;(Ⅲ)存在点M为B,由(Ⅰ)知CD⊥平面A1ABB1,又A1B?A1ABB1,可得CD⊥A1B,由已知可得A1A:AB=BD:BB1=1:,即证明A1B⊥B1D,又CD∩B1D=D,从而证明A1B⊥平面CDB1.解答: 证明:(Ⅰ)∵AC=BC,AC⊥BC,点D是AB的中点.∴CD=AB,由勾股定理可得CD⊥AB,又∵在直三棱柱ABC﹣A1B1C1中,AA1⊥CD,且AB∩AA1=A,∴CD⊥平面A1ABB1;(Ⅱ)连结BC1,设BC1与B1C的交点为E,连结DE.∵三棱柱ABC﹣A1B1C1,CC1⊥底面ABC,CC1=BC=2,∴四边形BCC1B1为正方形.∴E为BC1中点.∵D是AB的中点,∴DE∥AC1.∵DE?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1.(Ⅲ)存在点M为B,证明如下:由(Ⅰ)知CD⊥平面A1ABB1,又A1B?A1ABB1,∴CD⊥A1B,∵AC=BC=CC1,AC⊥BC,点D是AB的中点.∴设1=C=BC=CC1,以C为原点,以CA,CB,CC1分别为x,y,z轴正方向建立空间直角坐标系,则A1(1,0,1),B(0,1,0),B1(0,1,1),D(,,0),∴=(﹣1,1,﹣1),=(,﹣,﹣1),∴?=0,∴A1B⊥B1D,又CD∩B1D=D,∴A1B⊥平面CDB1.从而得证.点评: 本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查空间想象能力,逻辑思维能力,考查了转化思想,属于中档题.19.从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图1的频率分布直方图,从左到右各组的频数依次记为,,,,.(1)求图1中a的值;(2)图2是统计图1中各组频数的一个算法流程图,求输出的结果S.参考答案:(1)由频率直方图可知,解得;(2)根据程序框图;;;;,所以输出的;

20.已知二次函数且f(x)的零点满足.(1)求f(x)的解析式;(2)当时,不等式恒成立,求实数m的取值范围。参考答案:21.(本题16分)某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值);

(3)使用若干年后,对机床的处理方案有两种:

(i)当年平均盈利额达到最大值时,以30万元价格处理该机床;

(ii)当盈利额达到最大值时,以12万元价格处理该机床,问用哪种方案处理较为合算?请说明你的理由.参考答案:解析:(1)

=.………………3分

(2)解不等式

>0,得

<x<.∵x∈N,∴3≤x≤17.

故从第3年工厂开始盈利.

………………6分(3)(i)∵≤40当且仅当时,即x=7时,等号成立.∴到2008年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元.…………10分(ii)y=-2x2+40x-98=-2(x-10)2+102,当x=10时,ymax=102.故到2011年,盈利额达到最大值,工厂共获利102+12=114万元.

………………14分从年平均盈利来看,第一种处理方案为好

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论