




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行线的判定与性质的综合运用平行线的判定与性质的综合运用(1)定义法;在同一平面内不相交的两条直线是平行线。(2)传递法;两条直线都和第三条直线平行,这两条直线也平行。(4)三种角判定(3种方法):在这六种方法中,定义一般不常用。同位角相等,两直线平行。内错角相等,两直线平行。同旁内角互补,两直线平行。(3)因为a⊥c,a⊥b;所以b//cabCFABCDE1234判定两直线平行的方法有三种:(1)定义法;在同一平面内不相交的两条直线是平行线。(2)传两直线平行{1.同位角相等2.内错角相等3.同旁内角互补性质判定1.由_________得到___________的结论是平行线的判定;请注意:2.由____________得到______________的结论是平行线的性质.用途:用途:角的关系两直线平行说明直线平行两直线平行
角相等或互补说明角相等或互补两直线平行{1.同位角相等2.内错角相等3.同旁内角互补性质综合应用:ABCDEF1231、填空:
(1)、∵∠A=____,(已知)
AC∥ED,(_____________________)
(2)、∵AB∥______,(已知)∠2=∠4,(______________________)45(3)、___∥___,(已知)∠B=∠3.(___________
___________)
∠4同位角相等,两直线平行。DF两直线平行,内错角相等。ABDF两直线平行,同位角相等.判定性质
性质∴∴∴∵综合应用:ABCDEF1231、填空:(2)、∵AB∥_2.如图所示,下列推理正确的是(
)A.∵∠1=∠4,∴BC∥ADB.∵∠2=∠3,∴AB∥CDC.∵AD∥BC,∴∠BCD+∠ADC=180°D.∵∠1+∠2+∠C=180°,∴BC∥AD24BC13AD题组训练(1)2.如图所示,下列推理正确的是()24BC13AD题3.如图,已知AB∥CD,四种说法其中正确的个数是(
)①∠A+∠B=180°;②∠B+∠C=180°;③∠C+∠D=180°;④∠D+∠A=180°A.1个
B.2个
C.3个
D.4个CDBA题组训练(1)3.如图,已知AB∥CD,四种说法其中正确的个数是((变式训练一)如图,AB∥CD,AD∥BC,试探求∠B与∠D,∠A与∠C的关系?
CDBA(变式训练二)如果AB∥CD,且∠B=∠D,你能推理得出AD∥BC吗?题组训练(1)(变式训练一)如图,AB∥CD,AD∥BC,试探求∠B与∠D例1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.AEDFBC解:∵AD//BC(已知)∴∠A=∠ABF(两直线平行,内错角相等)又∵∠A=∠C(已知)∴∠ABF=∠C(等量代换)∴AB∥DC(同位角相等,两直线平行)例1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.A思考1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.AD∥BC.AB∥DC,解:∵AB//DC(已知)∴∠C=∠ABF(两直线平行,同位角相等)又∵∠A=∠C(已知)∴∠ABF=∠A(等量代换)∴AD∥BC(内错角相等,两直线平行)AEDFBC思考1:如图所示:AD∥BC,∠A=∠C,AD∥BC.AB∥解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行)思考2:如图,点E为DF上的点,点B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC321DEFABC∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行)思考3:如图,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,试问:∠A与∠F相等吗?请说出你的理由。321DEFABC∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)∴∠A=∠F(两直线平行,内错角相等)解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠解:又∵∠C=∠D(已知)∴∠D=∠ABD(两直线平行,内错角相等)∴BD∥CE(同位角相等,两直线平行)思考4:如图,已知∠A=∠F,∠C=∠D,求证:BD//CE.321DEFABC∴∠C=∠ABD(等量代换)∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)解:又∵∠C=∠D(已知)∴∠D=∠ABD∴BD∥C例2:如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.12ABCDEE例2:如图所示,已知:AE平分∠BAC,CE平分∠ACD,且思考一:
已知AB∥CD,GM,HM分别平分∠FGB,∠EHD,试判断GM与HM是否垂直?MGHFEDCBA思考一:已知AB∥CD,GM,HM分别平分∠FGB,∠EMGHFEDCBA思考2:若已知GM,HM分别平分∠FGB,∠EHD,GM⊥HM,试判断AB与CD是否平行?MGHFEDCBA思考2:若已知GM,HM分别平分∠FG思考3
:已知AB∥CD,GP,HQ分别平分∠EGB,∠EHD,判断GP与HQ是否平行?BACDFEHGPQ思考3:已知AB∥CD,GP,HQ分别平分∠EGB,∠E思考4:已知AB∥CD,GP,HQ分别平分∠AGF,∠EHD,判断GP与HQ是否平行?BACDFEHGPQ思考4:已知AB∥CD,GP,HQ分别平分∠AGF,∠EH思考5:已知,如图,BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,
求证:1)ABCD
2)BEDG
3)EDGD
∠1+∠2=90°132465EABCGFD思考5:已知,如图,BE平分∠ABD,DE平分∠BDC,D解:∴∠BAD=∠ADC(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠E=∠F(两直线平行,内错角相等)∵AB∥CD(已知)∴AF∥DE(内错角相等,两直线平行)∴∠3=∠4(等式的性质)例3:如图,已知AB∥CD,
∠1=∠2,求证∠E=∠F.F1EDBA2C)(34解:∴∠BAD=∠ADC又∵∠1=∠2(已知)∴∠E=思考1:如图,已知∠E=∠F,
∠1=∠2,求证AB∥CD.F1EDBA2C)(34思考1:如图,已知∠E=∠F,∠1=∠2,F1EDBA2C思考2:如图,已知AB∥CD,
∠E=∠F,求证∠1=∠2.F1EDBA2C)(34思考2:如图,已知AB∥CD,∠E=∠F,F1EDBA2C思考3:如图,已知AB∥CD,AF∥DE,
求证∠1=∠2.F1EDBA2C)(34思考3:如图,已知AB∥CD,AF∥DE,F1EDBA2思考4:如图,已知∠1=∠2,AF∥DE,
求证AB∥CD.F1EDBA2C)(34思考4:如图,已知∠1=∠2,AF∥DE,F1EDBA22.如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1,那么AD是∠BAC的角平分线吗?试说明理由。
EBDC2AG1331题组训练(2)2.如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1,那(变式1)如图,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF。试说明:BC平分∠DBE。12EABCFD题组训练(2)12EABCFD题组训练(2)(变式2)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠AOB的大小关系,并对结论进行证明。
EB2AD34FC1题组训练(2)EB2AD34FC1题组训练(2)题组训练(3)1.下列五个判断,选其中的2个作为条件,另一个作为结论,正确的有几个?(1)a//b(2)b//c(3)a//c(4)a⊥c(5)b⊥c题组训练(3)1.下列五个判断,选其中的2个作为条件,另一个2.如图,点E在线段BC上,从下列条件中:⑴AB∥CD;⑵∠1=∠A;⑶∠2=∠D;⑷AE⊥DE任选3个作为已知条件,另一个作为结论,编一道数学题,并说明理由。BE1A2DC题组训练(3)2.如图,点E在线段BC上,从下列条件中:BE1A2DC题组3.如图,已知直线CB∥OA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019年党建知识竞赛简答题题库及答案
- 2025年国内贸易买卖合同范本下载
- 2025合伙权益解决方案合同协议书
- 2025中国建设银行贷款合同范本
- 2025合法的服装分销合同协议
- 2025年农村果园承包合同范本
- 2025云端存储合同范本
- 企业安全培训巡查课件
- 2022年五险一金培训
- 超声监测眼晶状体变化-洞察及研究
- 桥梁检测评定与加固技术(第2版) 课件 第6章 桥梁检查与评定
- 兼职健身教练合作协议3篇
- 粮食安全政策
- UL2034标准中文版-2017一氧化碳报警器UL中文版标准
- 【MOOC】认识飞行-上海工程技术大学 中国大学慕课MOOC答案
- 国际商务谈判 习题答案、练习题及答案(白远)
- 关节活动维持与改善技术
- 幼儿园饮用水突发污染事故应急处理预案
- 政治-中国特色社会主义教材探究与分享参考答案高中政治统编版必修一
- 湖南省长沙市师大附中博才实验中学2024-2025学年九年级上学期开学考试语文试题
- 《赏书法之韵》教学课件1
评论
0/150
提交评论