版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市私立立志中学高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设某三棱锥的三视图如图所示,则该三棱锥外接球的表面积为()A.4π B.6π C.8π D.10π参考答案:C【考点】由三视图求面积、体积.【分析】作出三棱锥的直观图,根据三视图数据计算外接球半径,从而得出面积.【解答】解:根据三视图作出棱锥的直观图如图所示,由三视图可知底面ABC是等腰直角三角形,AB⊥BC,AC=2,PA⊥平面ABC,PA=2.∴PC==2,取AC的中点D,PC的中点O,连结OD,BD,OB,则OD∥PA,OD=PA=1,BD=AC=1,∴OD⊥平面ABC,∴OA=OC=OP=PC=,OB=.∴OA=OB=OC=OP=,即三棱锥的外接球球心为O,半径为.∴外接球的面积S=4π×()2=8π.故选C.2.小明用流程图把早上上班前需要做的事情做了如图方案,则所用时间最少A.23分钟
B.24分钟
C.26分钟
D.31分钟参考答案:C3.下列说法不正确的是(
)A.流程图通常有一个“起点”,一个或多个“终点”B.程序框图是流程图的一种C.结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成D.流程图与结构图是解决同一个问题的两种不同的方法参考答案:D4.已知,由不等式可以推广为A.
B.
C.
D.参考答案:B略5.对于指数曲线y=aebx,令u=lny,
c=lna,经过非线性化回归分析之后,可转化的形式为(
)A.
u=c+bx
B.
u=b+cx
C.
y=c+bx
D.y=b+cx参考答案:A略6.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数”,上述推理是(
)A.小前提错
B.结论错
C.正确的
D.大前提错参考答案:C略7.如图,是半圆的直径,点在半圆上,于点,且,设,则=(
)A.
B.
C.
D.参考答案:A8.设,若,则(
)A.
B.
C.
D.参考答案:B略9.将正奇数1,3,5,7,…排成五列(如下表),按此表的排列规律,2019所在的位置是(
)A.第一列
B.第二列
C.第三列
D.第四列参考答案:C由题意,令,解得,即数字是第个奇数,又由数表可知,每行个数字,则,则第个奇数位于第行的第2个数,所以位于第三列,故选C.
10.F1(﹣1,0)、F2(1,0)是椭圆的两焦点,过F1的直线l交椭圆于M、N,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.参考答案:A【考点】K3:椭圆的标准方程.【分析】由题意可知△MF2N的周长为4a,从而可求a的值,进一步可求b的值,故方程可求.【解答】解:由题意,4a=8,∴a=2,∵F1(﹣1,0)、F2(1,0)是椭圆的两焦点,∴b2=3,∴椭圆方程为,故选A.二、填空题:本大题共7小题,每小题4分,共28分11.在三棱锥S﹣ABC中,△ABC是边长为a的正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H﹣AB﹣C为30°,则三棱锥S﹣ABC的体积为
,三棱锥S﹣ABC的外接球半径为.参考答案:,.【考点】棱柱、棱锥、棱台的体积;球内接多面体.【分析】如图,AH⊥面SBC,设BH交SC于E,连接AE.由H是△SBC的垂心,可得BE⊥SC,由AH⊥平面SBC,可得SC⊥平面ABE,得到AB⊥SC,设S在底面ABC内的射影为O,则SO⊥平面ABC,可得AB⊥平面SCO,CO⊥AB,同理BO⊥AC,可得O是△ABC的垂心,由△ABC是正三角形.可得S在底面△ABC的射影O是△ABC的中心.可得三棱锥S﹣ABC为正三棱锥.进而得到∠EFC为二面角H﹣AB﹣C的平面角,∠EFC=30°,可得SO,即可得出三棱锥S﹣ABC的体积.设M为三棱锥S﹣ABC的外接球的球心,半径为R,则点M在SO上.在Rt△OCM中,利用勾股定理可得:,解出即可.【解答】解:如图,AH⊥面SBC,设BH交SC于E,连接AE.∵H是△SBC的垂心,∴BE⊥SC,∵AH⊥平面SBC,SC?平面SBC,∴AH⊥SC,又BE∩AH=H∴SC⊥平面ABE,∵AB?平面ABE,∴AB⊥SC,设S在底面ABC内的射影为O,则SO⊥平面ABC,∵AB?平面ABC,∴AB⊥SO,又SC∩SO=S,∴AB⊥平面SCO,∵CO?平面SCO,∴CO⊥AB,同理BO⊥AC,可得O是△ABC的垂心,∵△ABC是正三角形.∴S在底面△ABC的射影O是△ABC的中心.∴三棱锥S﹣ABC为正三棱锥.由有SA=SB=SC,延长CO交AB于F,连接EF,∵CF⊥AB,CF是EF在面ABC内的射影,∴EF⊥AB,∴∠EFC为二面角H﹣AB﹣C的平面角,∠EFC=30°,∵SC⊥平面ABE,EF?平面ABE,∴EF⊥SC,Rt△EFC中,∠ECF=60°,可得Rt△SOC中,OC===,SO=OCtan60°=a,VS﹣ABC===.设M为三棱锥S﹣ABC的外接球的球心,半径为R,则点M在SO上.在Rt△OCM中,MC2=OM2+OC2,∴,解得R=.故答案分别为:,.12.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,求双曲线C的方程。
参考答案:略13.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为正常数,,则动点P的轨迹为椭圆;②双曲线与椭圆有相同的焦点;③方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率;④和定点A(5,0)及定直线的距离之比为的点的轨迹方程为.其中真命题的序号为.参考答案:②③④【考点】双曲线的简单性质;椭圆的简单性质.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】①根据椭圆的定义,当k>|AB|时是椭圆;②正确,双曲线与椭圆有相同的焦点,焦点在x轴上,焦点坐标为(±,0);③方程2x2﹣5x+2=0的两根为或2,可分别作为椭圆和双曲线的离心率;④由双曲线的第二定义可知:点的轨迹是双曲线.【解答】解:①根据椭圆的定义,当k>|AB|时是椭圆,∴①不正确;②正确,双曲线与椭圆有相同的焦点,焦点在x轴上,焦点坐标为(±,0);③方程2x2﹣5x+2=0的两根为或2,可分别作为椭圆和双曲线的离心率,∴③正确④由双曲线的第二定义可知:点的轨迹是双曲线,且a=4,b=3,c=5.故答案为:②③④.【点评】本题主要考查了圆锥曲线的共同特征,同时考查了椭圆、双曲线与抛物线的性质,考查的知识点较多,属于中档题.14.如图,在透明材料制成的长方体容器ABCD—A1B1C1D1内灌注一些水,固定容器底面一边BC于桌面上,再将容器倾斜根据倾斜度的不同,有下列命题:(1)水的部分始终呈棱柱形;(2)水面四边形EFGH的面积不会改变;(3)棱A1D1始终
与水面EFGH平行;(4)当容器倾斜如图所示时,BExBF是定值,其中所有正确命题的序号是
参考答案:.(1),(3),(4)略15.过椭圆的右焦点的直线与椭圆交于两点,若弦中点为,则
.
参考答案:16.复数z满足方程,则z=______.参考答案:-1-i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由1﹣i?z=i,得iz=1﹣i,则z.故答案为﹣1﹣i.【点睛】本题考查复数代数形式的乘除运算,是基础题.17.求直线x﹣y=2被圆x2+y2=4截得的弦长为
.参考答案:2【考点】直线与圆相交的性质.【专题】计算题;转化思想;综合法;直线与圆.【分析】求出圆心到直线的距离,利用半径、半弦长,弦心距满足勾股定理,求出半弦长,即可求出结果.【解答】解:弦心距为:=;半径为:2,半弦长为:,弦长AB为:2故答案为:2.【点评】本题是基础题,考查直线与圆的位置关系,弦长的求法,考查计算能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)如图,四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD.⑴求证:AB⊥PD;⑵若M为PC的中点,求证:PA∥平面BDM.参考答案:证明:(1)因为ABCD为矩形,所以AB⊥AD.………………2分又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,
………………5分因为PD?平面PAD,故AB⊥PD.
………………7分(2)连接AC交BD于点O,连接OM.因为ABCD为矩形,所以O为AC的中点.
………………9分又M为PC的中点,所以MO∥PA.
………………11分因为MO?平面BDM,PA?平面BDM,所以PA∥平面BDM.
………………14分19.已知函数.(1)求曲线在点处的切线方程;(2)求曲线的单调区间及在[-1,1]上的最大值.参考答案:(1);(2)单调递增区间为和,单调递减区间为,最大值为17.(1)解:因为----------------------------------------------------------(2分)----------------------------------------------------------------------------(3分),则,------------------------------------------------------------(4分)所以切线方程为------------------------------------------------------------------(5分)(2)令得,-------------------------------(7分)当时,;当时,;当时,所以的单调递增区间为和,单调递减区间为;----------(10分)当时,.-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业设备管理手册
- 风险评估与管理实务指南(标准版)
- 2025 小学三年级科学下册橡胶与塑料抗摔性测试课件
- 边坡工春节假期安全告知书
- 消防知识题库及答案
- 消防安全题目及答案
- 服装店服务标准操作手册
- 医院感染防控操作流程手册
- 空调器压缩机装配工春节假期安全告知书
- 酒店餐饮菜品制作与质量控制手册
- 2026年江西科技学院单招职业技能笔试备考试题含答案解析
- 深度解析(2026)《MZT 238-2025 监测和定位辅助器具 毫米波雷达监测报警器》
- 2025-2026学年小学美术湘美版(2024)四年级上册期末练习卷及答案
- 辽宁省大连市2026届高三上学期1月双基模拟考试语文试题(含答案)
- 2025年肿瘤科年度工作总结汇报
- DL∕T 622-2012 立式水轮发电机弹性金属塑料推力轴瓦技术条件
- 传染病学-病毒性肝炎
- 重庆市沙坪坝小学小学语文五年级上册期末试卷
- 陶瓷岩板应用技术规程
- 中药制剂技术中职PPT完整全套教学课件
- 龙虎山正一日诵早晚课
评论
0/150
提交评论